Font Size: a A A

Using a motivation-based instructional model for teacher development and students' learning of science

Posted on:2010-01-31Degree:Ph.DType:Dissertation
University:Michigan State UniversityCandidate:Bae, Min-JungFull Text:PDF
GTID:1447390002484958Subject:Education
Abstract/Summary:PDF Full Text Request
Science teachers often have difficulty helping students participate in scientific practices and understand scientific ideas. In addition, they do not frequently help students value their science learning. As one way to address these problems, I designed and examined the effects of professional development using a motivation-based instructional model with teachers and students. This motivation-based inquiry and application instructional model (MIAIM) consists of four steps of activities and identifies instructional and motivational functions that teachers can use to engage their students in scientific inquiry and application and to help them value their science learning.;In order to conduct this study, I worked with three teachers (4 th, 8th, and 8th) in both suburban and urban environments. This study consisted of three parts-an initial observation of teachers' classrooms, professional development with MIAIM, and an observation of teachers' classrooms after the professional development.;Data analysis of class observations, interviews, and class artifacts shows that there was a moderate change in teachers' teaching approach after the intervention. The three teachers designed and enacted some inquiry and application lessons that fit the intent of MIAIM. They also used some instructional and motivational practices more frequently after the intervention than they did before the intervention. In particular, they more frequently established central questions for investigations, helped students find patterns in data by themselves, provided opportunities for application, related science to students' everyday lives, and created students' interests in scientific investigation by using interesting stories. However, there was no substantial change in teachers' use of some practices such as providing explanations, supporting students' autonomy, and using knowledge about students in designing and enacting science lessons.;In addition, data analysis of students' surveys, class observations, and tests indicates that some students from each class became more motivated to learn science when their teachers taught MIAIM based science lessons. They became more interested in science class and more appreciative of how science is related and important to their lives. In addition, students from all classes significantly increased their knowledge about scientific topics.;Several factors might have influenced the teachers' use of MIAIM: their initial teaching approaches and practices; experiences with using MIAIM in their class; the content area; and school and classroom contexts. Those aspects of MIAIM that teachers did not use may have been more difficult for the teachers to understand or may have been inconsistent with other some of their other beliefs. In addition, the changes in students' motivation and understanding of scientific ideas seemed to be closely associated with what kinds of practices of MIAIM the teachers used.;This study indicates that teachers can help students participate in scientific practices, learn important ideas, and value learning science with the help of MIAIM as a conceptual tool and contextualized support from professional development activities and curriculum materials such as worksheets and lesson plans.
Keywords/Search Tags:Students, Science, Development, Instructional model, Teachers, MIAIM, Using, Scientific
PDF Full Text Request
Related items