Font Size: a A A

Metal spintronics: Tunneling spectroscopy in junctions with magnetic and superconducting electrodes

Posted on:2007-01-11Degree:Ph.DType:Dissertation
University:Stanford UniversityCandidate:Yang, HyunsooFull Text:PDF
GTID:1450390005981437Subject:Engineering
Abstract/Summary:
Recent advances in generating, manipulating and detecting spin-polarized electrons and their electrical current make possible entirely new classes of spin-based sensor, logic and storage devices. An important such device is the magnetic tunnel junction (MTJ) which has been under intensive study in recent years: important applications include nonvolatile memory cells for high performance magnetic random access memory (MRAMs), and magnetic field sensors for high density hard disk drive read heads. Many aspects of the tunneling magnetoresistance (TMR) phenomenon are poorly understood although it is clear that the fundamental origin of TMR is the spin-polarization of the tunneling current. Thus, the measurement of the magnitude and sign of the tunneling spin polarization (TSP) is very important to help the further understanding of TMR.; Recently, an extremely high TMR value, of up to 350% at room temperature, has been reported in practical MTJ devices. These MTJs are fabricated with highly oriented crystalline MgO(100) tunnel barriers by straightforward magnetron sputter deposition at room temperature. In parallel with this observation, we report extremely high TSP values exceeding 90% from CoFe/MgO tunnel spin injectors. These TSP values rival the highest polarization values previously reported using exotic half-metallic oxide ferromagnets.; The spin polarization of electrons extracted from ferromagnetic films can be probed by a variety of techniques. Amongst these techniques, STS is perhaps the most relevant with respect to TMR but until now all measurements have been made with Al superconducting films which have low superconducting transition temperatures (Tc) so that the measurements must be made at temperatures below 400mK. We demonstrate the use of superconducting electrodes formed from NbN which has a much higher Tc (∼16K) than Al. The use of NbN allows measurements of TSP at higher temperatures above 1K.; We have observed the phenomenon of Kondo-assisted tunneling in planar magnetic tunnel junctions. We demonstrate not only an increased conductance at low bias but also show that the tunneling magnetoresistance is quenched in the Kondo regime. The Kondo effect may be a useful means of detecting and possibly manipulating the spins of individual electrons in nanodots.
Keywords/Search Tags:Spin, Tunneling, Magnetic, Superconducting, Electrons, TMR, TSP
Related items