Font Size: a A A

Probing spin ordering in iron-platinum based antiferromagnetic films using neutron diffraction

Posted on:2007-03-11Degree:Ph.DType:Dissertation
University:The University of AlabamaCandidate:Mani, PrakashFull Text:PDF
GTID:1450390005982262Subject:Physics
Abstract/Summary:PDF Full Text Request
The antiferromagnetic properties of chemically ordered and epitaxial films of FexPt100-x grown on MgO(111) & MgO(100) and Fe50Pt50- xRhx grown on MgO(100) have been studied with neutron diffraction. Epitaxial films of FexPt 100-x (x = 25, 30) have two kinds of antiferromagnetic ordering. The Neel temperature of spin wave vector QA = (1/2 1/2 0) is T N = 160 K and QB = (1/2 0 0) is TN = 100 K, respectively. Neutron diffraction is used to determine the phase diagram of the antiferromagnetic ordering as a function of composition and temperature. The nature of antiferromagnetic ordering was found to be strongly related to the lattice strain present in the system. Lattice-matched antiferromagnetic/ferromagnetic films offer an ideal layered system to study exchange bias. The loop shifts in FePt3(AF)/CoPt 3(F) multilayers are correlated with rocking curve peak widths, and it has been shown that films with a narrower full-width-half-maximum have a smaller exchange bias. Neutron reflectivity is also applied to CoPt 3/FePt3 multilayers in order to probe layer-specific magnetizations owing to the significant difference in neutron scattering length density between Fe and Co. Fe50Pt50-xRh x (x∼10) exhibits a temperature dependent antiferromagnetic-ferromagnetic-paramagnetic triple point near 400 K. The temperature and composition dependent spin structure of Fe50Pt 50-xRhx alloy films grown on MgO(100) have been determined for the first time with neutron diffraction. Three types of antiferromagnetic orderings were observed: (0 0 1/2), (1/2 1/2 1/2), and (1/2 1/2 3/2). Future studies have been planned to explore a magnetic field induced antiferromagnetic to ferromagnetic transition in Fe50Pt50-xRh x alloy films.
Keywords/Search Tags:Antiferromagnetic, Films, Neutron diffraction, Ordering, 1/2, Spin, Mgo
PDF Full Text Request
Related items