Font Size: a A A

Coseismic Deformation Detection and Quantification for Great Earthquakes Using Spaceborne Gravimetry

Posted on:2013-10-08Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Wang, LeiFull Text:PDF
GTID:1450390008963590Subject:Geodesy
Abstract/Summary:
Because of Earth's elasticity and its viscoelasticity, earthquakes induce mass redistributions in the crust and upper mantle, and consequently change Earth's external gravitational field. Data from Gravity Recovery And Climate Experiment (GRACE) spaceborne gravimetry mission is able to detect the permanent gravitational and its gradient changes caused by great earthquakes, and provides an independent and thus valuable data type for earthquake studies. This study uses a spatiospectral localization analysis employing the Slepian basis functions and shows that the method is novel and efficient to represent and analyze regional signals, and particularly suitable for extracting coseismic deformation signals from GRACE. For the first time, this study uses the Monte Carlo optimization method (Simulated Annealing) for geophysical inversion to quantify earthquake faulting parameters using GRACE detected gravitational changes. GRACE monthly gravity field solutions have been analyzed for recent great earthquakes. For the 2004 Mw 9.2 Sumatra-Andaman and 2005 Nias earthquakes (Mw 8.6), it is shown for the first time that refined deformation signals are detectable by processing the GRACE data in terms of the full gravitational gradient tensor. The GRACE-inferred gravitational gradients agree well with coseismic model predictions. Due to the characteristics of gradient measurements, which have enhanced high-frequency contents, the GRACE observations provide a more clear delineation of the fault lines, locate significant slips, and better define the extent of the coseismic deformation; For the 2010 Mw 8.8 Maule (Chile) earthquake and the 2011 Mw 9.0 Tohoku-Oki earthquake, by inverting the GRACE detected gravity change signals, it is demonstrated that, complimentary to classic teleseismic records and geodetic measurements, the coseismic gravitational change observed by spaceborne gravimetry can be used to quantify large scale deformations induced by great earthquakes.
Keywords/Search Tags:Earthquakes, Coseismic, Deformation, Spaceborne, GRACE, Gravitational, Change
Related items