Font Size: a A A

Hybrid solution of stochastic optimal control problems using Gauss pseudospectral method and generalized polynomial chaos algorithms

Posted on:2013-06-18Degree:Ph.DType:Dissertation
University:Air Force Institute of TechnologyCandidate:Cottrill, Gerald CFull Text:PDF
GTID:1450390008985820Subject:Engineering
Abstract/Summary:
A hybrid numerical algorithm combining the Gauss Pseudospectral Method (GPM) with a Generalized Polynomial Chaos (gPC) method to solve nonlinear stochastic optimal control problems with constraint uncertainties is presented. TheGPM and gPC have been shown to be spectrally accurate numerical methods for solving deterministic optimal control problems and stochastic differential equations, respectively. The gPC uses collocation nodes to sample the random space, which are then inserted into the differential equations and solved by applying standard differential equation methods. The resulting set of deterministic solutions is used to characterize the distribution of the solution by constructing a polynomial representation of the output as a function of uncertain parameters. Optimal control problems are especially challenging to solve since they often include path constraints, bounded controls, boundary conditions, and require solutions that minimize a cost functional. Adding random parameters can make these problems even more challenging. The hybrid algorithm presented in this dissertation is the first time the GPM and gPC algorithms have been combined to solve optimal control problems with random parameters. Using the GPM in the gPC construct provides minimum cost deterministic solutions used in stochastic computations that meet path, control, and boundary constraints, thus extending current gPC methods to be applicable to stochastic optimal control problems. The hybrid GPM-gPC algorithm was applied to two concept demonstration problems: a nonlinear optimal control problem with multiplicative uncertain elements and a trajectory optimization problem simulating an aircraft flying through a threat field where exact locations of the threats are unknown. The results show that the expected value, variance, and covariance statistics of the polynomial output function approximations of the state, control, cost, and terminal time variables agree with Monte-Carlo simulation results while requiring on the order of (1/40)th to (1/100)th the number of collocation points and computation time. It was shown that the hybrid algorithm demonstrated an ability to effectively characterize how the solutions to optimization problems vary with uncertainty, and has the potential with continued development and availability of more powerful computer workstations, to be a powerful tool applicable to more complex control problems of interest to the Department of Defense.
Keywords/Search Tags:Control problems, Hybrid, Polynomial, Algorithm, Method, Gpc, GPM
Related items