Font Size: a A A

Synthesis, properties and host effects of rare-earth doped silica nanopowders for photonic applications

Posted on:2006-02-15Degree:Ph.DType:Dissertation
University:Rutgers The State University of New Jersey - New BrunswickCandidate:Halpern, Susan BFull Text:PDF
GTID:1451390005491955Subject:Engineering
Abstract/Summary:
In this study, SiO2/Al2O3/Er2O 3 (SAE) nanopowders were fabricated by the CF-CVC technique with average primary particle sizes ranging from 10--30 nm. Fluorescence and lifetime measurements were made both on as-prepared powders, as well as heat treated powders, with the latter exhibiting significantly higher emission intensities. At ∼1000°C, the SAE became partially devitrified with extremely broad (FWHM ≈ 78 nm) and flat emission spectra, which is highly desirable for Wavelength Division Multiplexing (WDM) in optical amplifiers. The unique optical properties of the powders are attributed to the formation of a metastable phase consisting of an uniform nano-scale dispersion of a metastable intermediate SiO2 (Al,Er)2O3 phase in an amorphous SiO 2 matrix. At higher heat treatments (1400°C), a dual-phase equilibrium structure was formed, consisting of a pyrochlore phase in a crystobalite matrix.; The SAE nanopowders were incorporated into various optical hybrid glass hosts for active planar waveguide applications. Host selection was dependent on transparency in the wavelength region of interest (900 nm--1600 nm), index matching (n ∼ 1.5), chemical/thermal stability, and ease of processing. Furthermore, the inorganic-organic glasses were hydrophobic, resulting in a minimal level of residual OH- which can quench fluorescence emission. Four separate groups of host materials were studied: Perfluoro-alkyl Hybrid Glass (n ≈ 1.42), Alumina-Silica Hybrid Glass (n ≈ 1.49), Polyurethane-Silica Hybrid Glass (n ≈ 1.44), and Methyl/Epoxy Group Hybrid Glass (n ≈ 1.48). All hosts showed high spectral transparency, uniform dispersion of the nanopowder in the host, and minimal surface quenching of emission, and therefore represent excellent candidates for fabrication of next generation nanophotonic planar devices.
Keywords/Search Tags:Host, Nanopowders, SAE, Hybrid glass, Emission
Related items