Font Size: a A A

Layer-by-layer self-assembly of ceramic particles for complex shape coating synthesis

Posted on:2007-12-27Degree:Ph.DType:Dissertation
University:Stevens Institute of TechnologyCandidate:Qiu, HongweiFull Text:PDF
GTID:1451390005981797Subject:Engineering
Abstract/Summary:
Layer-by-layer (LbL) self-assembly was explored as a non-line-of-sight method for uniform infiltration and deposition of a multilayer of ceramic particles into complex structures. Key parameters for controlling the LbL self-assembly process were studied using a model system which consisted of a silicon substrate, 100 nm and 500 nm silica particles, and a polycation/polyanion combination. We correlated the surface coverage of the silica particles to the NaCl concentration used in deposition of the polyelectrolyte layers and to the number of the polyelectrolyte layers deposited.{09}The effect of particle size on the surface coverage was rationally explained based on the screening length. We found that the effects of particle size, polydispersity, and electrolyte concentration in the particle suspension on the surface coverage and morphology of the first silica particle layer deposited on the polyelectrolyte layer surface were highly coupled, and resolving these effects was important for infiltrating a uniform coating of multilayer silica particle assemblies into a cellular structure as an ultimate complex substrate. Based on this understanding, the Lbl, self-assembly method was applied as a method of assembling, infiltrating, and immobilizing a 4-layer coating of negatively charged ∼3 mum Pd/NaAI(Si)O catalyst particles in the confined space of the cellular structure with ∼400 mum interconnected cells. The 4-layer coating deposited on the inner wall of a stainless steel capillary tube was mechanically stable under water flow rate up to 10 ml/min over the pH range of 3 to 11. Scotch tape peeling evaluation suggested that failure locations were mostly within the catalyst particle assembly, but near the assembly-PEM interface region.
Keywords/Search Tags:Particle, Self-assembly, Coating, Complex
Related items