Font Size: a A A

Rheological behavior of oxide nanopowder suspensions

Posted on:2014-02-10Degree:Ph.DType:Dissertation
University:Iowa State UniversityCandidate:Cinar, SimgeFull Text:PDF
GTID:1451390005990818Subject:Engineering
Abstract/Summary:
Ceramic nanopowders offer great potential in advanced ceramic materials and many other technologically important applications. Because a material's rheological properties are crucial for most processing routes, control of the rheological behavior has drawn significant attention in the recent past.;The control of rheological behavior relies on an understanding of how different parameters affect the suspension viscosities. Even though the suspension stabilization mechanisms are relatively well understood for sub-micron and micron size particle systems, this knowledge cannot be directly transferred to nanopowder suspensions. Nanopowder suspensions exhibit unexpectedly high viscosities that cannot be explained with conventional mechanisms and are still a topic of investigation.;This dissertation aims to establish the critical parameters governing the rheological behavior of concentrated oxide nanopowder suspensions, and to elucidate the mechanisms by which these parameters control the rheology of these suspensions. Aqueous alumina nanopowders were chosen as a model system, and the findings were extrapolated to other oxide nanopowder systems such as zirconia, yttria stabilized zirconia, and titania. Processing additives such as fructose, NaCl, HCl, NaOH, and ascorbic acid were used in this study.;The effect of solids content and addition of fructose on the viscosity of alumina nanopowder suspensions was investigated by low temperature differential scanning calorimetry (LT-DSC), rheological, and zeta potential measurements. The analysis of bound water events observed in LT-DSC revealed useful information regarding the rheological behavior of nanopowder suspensions. Because of the significance of interparticle interactions in nanopowder suspensions, the electrostatic stabilization was investigated using indifferent and potential determining ions. Different mechanisms, e.g., the effect of the change in effective volume fraction caused by fructose addition and electrostatic stabilization, were combined to optimize the viscosities and the ability to control the suspension viscosity. The intrinsic viscosities of nanopowder systems were estimated using the Krieger-Dougherty relation. Both the individual and the combined effects were evaluated using slip casting of green bodies. Also, ascorbic acid was used to disperse the alumina nanopowders (described here for the first time in the open literature). The mechanism of viscosity reduction was investigated by in situ Attenuated Total Reflectance Fourier Infrared Spectroscopy (ATR-FTIR), rheological, suspension pH, and zeta potential measurements. Lastly, the findings were extrapolated to several other oxide systems. The rheological behavior of zirconia, yttria stabilized zirconia, and titania nanopowder systems was investigated as a function of solids content, bound water, and intrinsic viscosity.;The results indicated that nanopowder suspensions differ from sub-micron powder suspensions because of the higher bound water content and the short separation distances between particles causing increased interparticle interactions. The bound water event was associated with the powder surface. This layer differed from the electrostatic double layer in that it was modified by fructose molecules as well as by specifically adsorbed ions such as H+ and OH but not by indifferent electrolytes, such as NaCl. Because of the large surface area of nanopowders, this additional layer increased the effective solids content and led to higher viscosities. While the alumina suspensions were studied in detail, it was also shown that the bound water was not unique to the alumina nanopowder suspensions, but also present in other oxide systems. However, the bound water content was unique for each system and provided information about its origin. The presence of bound water resulted in lower the maximum achievable solids fractions for nanopowder systems. In order to achieve higher solids contents, the bound water layer had to be modified.;Because of the limited separation distances and large surface areas of nanopowders, the electrostatic double layer has an amplified effect on the viscosity of the suspensions. The addition of NaCl decreased the viscosity of alumina nanopowder suspensions significantly by compressing the double layer hence limiting the repulsion length.;We also discovered that ascorbic acid can be used to disperse the alumina nanopowder suspensions. By adding only 1 wt% of ascorbic acid, the viscosity of the suspensions decreased significantly. It was shown that ascorbic acid molecules adsorbed to the alumina surfaces and when the adsorption reached equilibrium, the lowest viscosities were observed. By lowering the viscosities, the maximum achievable solids content (where viscosity = 1 Pa at a shear rate of 100 s-1) could be increased up to about 0.35, which is the highest solids content achieved with readily available processing additives reported in the open literature.;Even though it is almost impossible to isolate the individual effects, three dominant mechanisms were observed in nanopowder suspensions: (i) increase in effective volume fraction (bound water), (ii) interparticle interactions (electrostatic), and (iii) adsorption of organic molecules. It was shown that the understanding of the system's parameters enables the optimization of the rheological behavior of the suspensions and the prediction of the green body quality.
Keywords/Search Tags:Rheological, Suspensions, Nanopowder, Bound water, Ascorbic acid, Solids content, Viscosity, Parameters
Related items