Font Size: a A A

Evolution of mechanical properties of M50 bearing steel due to rolling contact fatigue

Posted on:2014-07-04Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Allison, Bryan DFull Text:PDF
GTID:1451390005996103Subject:Mechanical engineering
Abstract/Summary:PDF Full Text Request
Current bearing life models significantly under predict the life of bearings made of modern ultra-clean steels. New life models that include the constitutive response of the material are needed. However, the constitutive response of bearing steel is known to change during bearing operation. In the current study, the evolution of the mechanical properties of M50 bearing steel due to rolling contact fatigue (RCF) was investigated. A combination of M50 balls and rods were subjected to RCF testing under various conditions (e.g. number of RCF cycles, applied Hertzian stress, and interacting material). Additionally, some of the balls tested went through a proprietary mechanical process to induce compressive residual stresses over the first several hundred microns into the depth of the ball prior to RCF testing.;After RCF testing, the specimens were subjected to a number of tests. First, the residual stresses within the subsurface RCF affected region were measured via x-ray diffraction. The residual stresses within the mechanically processed (MP) balls were found to not significantly change due to RCF, while a linear relationship was found between the maximum residual stress with the RCF affected zone and the Hertzian stress for the unprocessed balls. Then, the specimens were sectioned, polished, and chemically etched to study the evolution of the microstructure due to RCF. A similar relationship was found between the size of the dark etching region (DER) and the Hertzian stress. Formation of a light etching region (LER) is demonstrated to not correlate with a decrease in material strength and hardness, but it does serve as a predictor for failure due to spall. Micro-indentation was performed within subsurface to estimate the local yield stress. Micro-indentation is not able to provide information about the stress-strain response, only the yield strength. Hence, a novel method to extract and test miniature compression specimens from within the RCF affected regions of balls after RCF was developed. Using this method, it is possible to determine the full stress-strain response of material after material that has undergone RCF. The micro-hardness of the material within the RCF affected region was found to increase by nearly 10% and yield strength increased 13% when high contact stress levels were employed in fatigue experiments. It was demonstrated that the number of cycles does contribute to hardness increase, but the applied Hertzian stress is the dominant factor. Mechanical processing was found to significantly retard the rate of mechanical property evolution, implying that it would also significantly improve the life. Similarly, it was observed that the rate of hardening is slower when silicon nitride is used to interact with the M50 specimen than another M50 component. This supports the idea that hybrid bearings last longer than more traditional all-steel bearings. Finally, an empirical model of the evolution of the constitutive response of the bearing material within the RCF affected region was developed based on the results of these analyses. This model can be used to predict the constitutive response of the material within the RCF affected region of an M50 steel ball, given the initial hardness, number of RCF cycles, and applied Hertzian stress. Further, it is now possible to solve the local yield strength as a function of depth within the RCF affected region given these same parameters.
Keywords/Search Tags:RCF, M50, Bearing, Steel, Evolution, Mechanical, Due, Yield strength
PDF Full Text Request
Related items