Font Size: a A A

Probing Interaction Between Platinum Group Metal (PGM) and Non-PGM Support Through Surface Characterization and Device Performance

Posted on:2017-02-14Degree:Ph.DType:Dissertation
University:University of WyomingCandidate:Saha, ShibelyFull Text:PDF
GTID:1451390008452938Subject:Chemical Engineering
Abstract/Summary:
High cost and limited abundance of Platinum (Pt) have hindered effective commercialization of Proton Exchange Membrane Fuel Cell and Electrolyzer. Efforts have been undertaken to reduce precious group metal (PGM) requirement for these devices without compromising the activity of the catalyst by using transition metal carbides (TMC) as non-PGM support thanks to their similar electronic and geometric structures as Pt. In this work Mo2C was selected as non-PGM support and Pt was used as the PGM of interest. We hypothesize that the hollow nanotube morphology of Mo2C support combined with Pt nano particles deposited on it via atomic layer deposition (ALD) technique would allow increased interaction between them which may increase the activity of Pt and Mo2C as well as maximize the Pt active surface area. Specifically, a rotary ALD equipment was used to grow Pt particles from atomic level to 2--3 nanometers by simply adjusting number of ALD cycles in order to probe the interaction between the deposited Pt nanoparticles and Mo2C nanotube support. Interaction between the Pt and Mo2 C was analyzed via surface characterization and electrochemical characterization. Interaction between Pt and Mo2C arises due to the lattice mismatch between Pt and Mo2C as well as electron migration between them. Lattice spacing analysis using high resolution transmission electron microscopy (HRTEM) images, combined with Pt binding energy shift in XPS results, clearly showed strong bonding between Pt nanoparticles and the Mo2C nanotube support in all the resultant Pt/Mo2C samples. We postulate that this strong interaction is responsible for the significantly enhanced durability observed in our constant potential electrolysis (CPE) and accelerated degradation testing (ADT). Of the three samples from different ALD cycles (15, 50 and 100), Mo2C nanotubes modified by 50 (1.07 wt% Pt loading) and 100 cycles (4.4 wt% Pt) of Pt deposition, showed higher HER and HOR activity per Pt mass than commercial 20% Pt supported on carbon black. Finally, we report the systematic investigation of the feasibility of this nanoscale Pt/Mo 2C catalyst in a practical device setting. The ORR activity of 100 Pt/Mo 2C was determined using the catalyst in the cathode of the MEA. Performance of this catalyst led the Pt utilization to be 10.35kWgPt-1 outperforming the target set by DOE for 2017--2020 by 30%.
Keywords/Search Tags:Non-pgm support, Interaction, PGM, Metal, Surface, Characterization, Catalyst, Mo2c
Related items