| Water-in-crude oil emulsions are a problem in crude oil production, transportation, and processing. Many of these emulsions are stabilized by asphaltenes and native oilfield solids adsorbed at the oil-water interface. Design of effective emulsion treatments is hampered because there is a lack of understanding of the role asphaltenes and solids play in stabilizing these emulsions. In this work, the structural, compositional and rheological properties of water/hydrocarbon interfaces were determined for model emulsions consisting of water, toluene, heptane, asphaltenes and native oilfield solids. The characteristics of the interface were related to the properties of asphaltenes and native solids. Emulsion stability was correlated to interfacial rheology.; A combination of vapour pressure osmometry, interfacial tension and emulsion gravimetric studies indicated that asphaltenes initially adsorb at the interface as a monolayer of self-associated molecular aggregates. It was demonstrated why it is necessary to account for asphaltene self-association when interpreting interfacial measurements. The interfacial area of Athabasca asphaltenes was found to be approximately 1.5 nm2 and did not vary with concentration or asphaltene self-association. Hence, more self-associated asphaltenes simply formed a thicker monolayer. The interfacial monolayer observed in this work varied from 2 to 9 nm in thickness.; The asphaltene monolayer was shown to adsorb reversibly only at short interface aging times. The film gradually reorganizes at the interface to form a rigid, irreversibly adsorbed network. The elastic and viscous moduli can be modeled using the Lucassen-van den Tempel (LVDT) model when the aging time is less than 10 minutes. An increase in film rigidity can be detected with an increase in the total elastic modulus.; Increased film rigidity was shown to reduce the rate of coalescence in an emulsion and increase overall emulsion stability (reduce free water resolution). The rate of coalescence and the free water resolution of emulsions decreased when the interface aging time increased, the heptane fraction in heptol increased, and the asphaltene concentration decreased. For systems in which asphaltenes do not leave the interface during coalescence, the rate of coalescence correlated to the measured total modulus over a range of asphaltene concentrations, solvent qualities, and interface aging times. For systems in which asphaltenes leave the interface during coalescence, the correlation under-predicted the coalescence rate because the total modulus increases as material leaves the interface. (Abstract shortened by UMI.)... |