Font Size: a A A

Radiation Induced Segregation in High Chromium Ferritic/Martensitic Steels

Posted on:2013-12-15Degree:Ph.DType:Dissertation
University:The University of Wisconsin - MadisonCandidate:Field, Kevin GFull Text:PDF
GTID:1451390008466087Subject:Engineering
Abstract/Summary:
High Cr ferritic/martensitic (F/M) steels including nano-featured oxide dispersion strengthened steels (NF-ODS) are a candidate material class for advanced fission and fusion nuclear reactor designs. F/M steels have excellent high temperature strength, low swelling rates and the recent developments in NF-ODS steels has improved their high temperature creep performance. A concern for F/M steels is their radiation induced segregation (RIS) response while in-service. RIS occurs when atomic fluxes preferentially couple to point defect fluxes to defect sinks such as grain boundaries (GBs). For F/M steels no conclusive trends or dependencies on the RIS response have been drawn.;Interfaces, including grain boundaries and precipitate-matrix interfaces can alter the RIS response. The grain boundary structure could change the point defect interaction at the GB. Changes in the point defect kinetics at a grain boundary could therefore alter the RIS response at the boundary. Furthermore, oxide nanoclusters in NF-ODS steel act as sinks for point defects under irradiation. The surface area and number density of these nanoclusters in NF-ODS steels could alter the point defect fluxes to GBs. Analytical microscopy techniques were conducted to determine the role of grain boundary structure and nanocluster dispersion on the RIS response in irradiated F/M steels. Here, a 9 wt. % Cr model alloy which simulates the structure of commercially available steels and 14YWT NF-ODS alloy was irradiated under numerous conditions. Both alloys were investigated using STEM/EDS and GB misorientation analysis. Experimental results indicate a preferential segregation of Cr to specific GB misorientations in the model F/M steel. Findings in the NF-ODS alloy indicates the stability of nanoclusters within the alloy alters the concentration gradient of the point defects near irradiated GBs. Based on these results, new theories on the role of interfaces in irradiated F/M steels was developed including a rate theory model which accounts for the GB misorientation angle within the RIS model. These theories will stimulate the development of new F/M steels which are highly resistant to RIS while in-service.
Keywords/Search Tags:Steels, F/M, RIS, NF-ODS, Point defect, Segregation, Model
Related items