Font Size: a A A

Synthesis and Characterization of Ferroic and Multiferroic Nanostructures by Liquid Phase Deposition

Posted on:2013-12-24Degree:Ph.DType:Dissertation
University:University of New OrleansCandidate:Yourdkhani, AminFull Text:PDF
GTID:1451390008469913Subject:Chemistry
Abstract/Summary:
Magnetoelectric multiferroics have garnered an increasing interest in the past decade due to their unique properties and relevant applications in data storage, sensing and spintronics. A key requirement for the enhancement of the magnetoelectric effect at room temperature is the optimization of the interface between the constituting phases by designing nanocomposites with selectable topologies and variable chemical composition. In this research, the rational design of two-phase spinel-perovskite ceramic nanocomposites with two different geometries: coaxial nanostructures (1-D) and bilayered nanostructures (2-D), by a soft solution chemistry approach will be described. The liquid phase deposition (LPD) method is a simple and versatile route for the deposition of highly uniform spinel ferrite (MFe2O4) and/or titanium-based perovskite (BaTiO3, PbTiO3) by the controlled hydrolysis of metal fluoro-complexes at temperatures as low as 40°C. By designing a sequential deposition process, 1-D and 2-D magnetoelectric nanostructures were fabricated by filling perovskite nanotubes with the ferrite phase or depositing a ferrite layer on top of a perovskite thin film, respectively. The compositional and morphological characteristics of these highly uniform metal oxide nanostructures were investigated by X-ray diffraction (XRD), Raman spectroscopy, scanning probe microscopy (SPM) and electron microscopy (FE-SEM and TEM). The direct evidence of the stress mediated magnetoelectric coupling between the spinel and perovskite of the bilayered nanostructures was qualitatively studied by Raman spectroscopy. Additionally, the direct magnetoelectric effect in these 1-D and bilayered multiferroic nanocomposites was evaluated both quantitatively and qualitatively by using a novel magnetic field-assisted piezoelectric force microscopy (M-PFM) technique. The quantitative estimation of the magnetoelectric coupling coefficients was performed by tracking the changes in the phase and -amplitude of the piezoelectric signal signals when a in-plane dc magnetic field was applied parallel to the sample. Their non-resonant values typically range between 100-1200 mV/cm.Oe, thereby indicating a strong coupling between the magnetic and electrostrictive phases which can be used in different sensing and data storage applications.;Keywords: Ferroics, Multiferroics, Liquid Phase Deposition, Scanning Probe Microscopy, Magnetic Properties, Electrical Properties.
Keywords/Search Tags:Liquid phase, Deposition, Nanostructures, Magnetoelectric, Microscopy, Magnetic
Related items