Font Size: a A A

Pattern formation in actin gels: A study in the mechanics of gels formed by the important cytoskeletal protein actin, especially as applied to cellular motility

Posted on:2006-10-01Degree:Ph.DType:Dissertation
University:Indiana UniversityCandidate:Balter, ArielFull Text:PDF
GTID:1451390008471613Subject:Physics
Abstract/Summary:
We have studied pattern formation in actin gels to better understand how they function in biological systems, especially in the motility mechanism used by some pathogenic bacteria such as Listeria. By coating themselves with certain enzymes, these bacteria appropriate actin (a protein) from the surrounding host cell's cytoplasm and cause a network or "gel" of actin filaments to grow on their outer surface. As the resulting "comet tail" shaped protrusion grows, it pushes the bacterium away.; In experiments, polystyrene beads coated with the same enzymes will also generate comet tails and swim in a very similar manner. However, these bead experiments have also generated anomalous results such as the formation of many comet tails. In some experiments, when two comet tails formed they systematically grew into regular, oppositely handed helices.; The formation of any comet tails on a bead poses a physical conundrum. The bacterial enzyme coating is asymmetrical so the comet tail forms in a particular place. But the beads are symmetrical, so comet tails formation constitutes symmetry breaking and spontaneous pattern formation.; We have modeled this process as a competition between elastic energy (which favors many tails) and chemical energy (which favors few tails). Our analytical model explains the factors that experimentally determine the number of tails, and numerical simulations confirm these predictions.; To understand the helical tails, we did extensive data analysis involving image processing, statistical analysis and mathematical modeling of images of the helical tails. We identified some important features of how the twin tails form. For instance, the tail growth rate is independent of drag force, and bead rotation must accompany helical tail formation. We also created a physical model for helical growth. Numerical simulations of our model show that at very low Reynolds number, a cylindrical object growing under the conditions of an actin comet tail can spontaneously grow into a helical shape.
Keywords/Search Tags:Actin, Formation, Gels, Comet, Tails, Helical
Related items