Font Size: a A A

Regeneration of Bombyx mori silk nanofibers and nanocomposite fibrils by the electrospinning process

Posted on:2006-09-20Degree:Ph.DType:Dissertation
University:Drexel UniversityCandidate:Ayutsede, Jonathan EyitouyoFull Text:PDF
GTID:1451390008473547Subject:Engineering
Abstract/Summary:
In recent years, there has been significant interest in the utilization of natural materials for novel nanoproducts such as tissue engineered scaffolds. Silkworm silk fibers represent one of the strongest natural fibers known. Silkworm silk, a protein-based natural biopolymer, has received renewed interest in recent years due to its unique properties (strength, toughness) and potential applications such as smart textiles, protective clothing and tissue engineering. The traditional 10--20 mum diameter, triangular-shaped Bombyx mori fibers have remained unchanged over the years. However, in our study, we examine the scientific implication and potential applications of reducing the diameter to the nanoscale, changing the triangular shape of the fiber and adding nanofillers in the form of single wall carbon nanotubes (SWNT) by the electrospinning process. The electrospinning process preserves the natural conformation of the silk (random and beta-sheet). The feasibility of changing the properties of the electrospun nanofibers by post processing treatments (annealing and chemical treatment) was investigated. B. mori silk fibroin solution (formic acid) was successfully electrospun to produce uniform nanofibers (as small as 12 nm). Response Surface Methodology (RSM) was applied for the first time to experimental results of electrospinning, to develop a processing window that can reproduce regenerated silk nanofibers of a predictable size (d < 100nm). SWNT-silk multifunctional nanocomposite fibers were fabricated for the first time with anticipated properties (mechanical, thermal and electrically conductive) that may have scientific applications (nerve regeneration, stimulation of cell-scaffold interaction). In order to realize these applications, the following areas need to be addressed: a systematic investigation of the dispersion of the nanotubes in the silk matrix, a determination of new methodologies for characterizing the nanofiber properties and establishing the nature of the silk-SWNT interactions. A new visualization system was developed to characterize the transport properties of the nanofibrous assemblies. The morphological, chemical, structural and mechanical properties of the nanofibers were determined by field emission environmental scanning microscopy, Fourier transform infrared and Raman spectroscopy, wide angle x-ray diffraction and microtensile tester respectively.
Keywords/Search Tags:Silk, Nanofibers, Electrospinning, Mori, Natural
Related items