Font Size: a A A

Molecular interactions in metal organic frameworks for optimized gas separation, storage and sensing applications

Posted on:2013-05-31Degree:Ph.DType:Dissertation
University:The University of Texas at DallasCandidate:Nijem, NourFull Text:PDF
GTID:1451390008487040Subject:Engineering
Abstract/Summary:
Hydrogen storage and CO2 capture are two of the most challenging problems for the development of renewable energy sources and the reduction of CO2 emission. Hydrogen storage aims at storing a high volumetric density of hydrogen at room temperature. Fundamental studies exploring molecular hydrogen interactions in storage materials are therefore important to foster further development of materials. Metal-organic Frameworks (MOFs) are promising candidates for hydrogen storage and gas separation because their high surface area, porosity and structural tailorability all contribute to selective high hydrogen and CO2 physisorption at specific sites in the structures. This work explores the incorporation of hydrogen, CO2 and hydrocarbons into various MOFs using infrared (IR) and Raman spectroscopy to characterize their interaction. IR spectroscopy can distinguish possible H2 binding sites based on the perturbation of the initially IR inactive internal H2 stretch mode. Comparative IR measurements are performed on MOFs with both saturated metal centers (e.g., M(bdc)(ted)0.5) and unsaturated metal centers (e.g., MOF-74-M with M=Zn, Mg and Ni) by varying the ligand and/or the metal center. We combine room-temperature and high-pressure with low-temperature (20–100K) measurements and use theoretical van der Waals density functional (vdW-DF) calculations to derive quantitative information from the vibrational band shifts and dipole moment strengths. In addition to H2, CO2 and hydrocarbon adsorption and selectivity in a flexible MOF system using Raman and IR spectroscopy are explored. The CO2 specific interaction with the framework and the specific connectivity of the metal to the ligands is found to be the main reason for this MOFs flexibility leading to its large CO2 selectivity, and a novel "gate opening" phenomenon. The unexpected gate opening behavior in this flexible framework upon different hydrocarbon adsorption is studied to uncover effects of specific hydrogen bonding on the gate opening characteristics. Identifying the specific interactions with the host leading to the desired and sought properties will guide the intelligent design for optimizing materials for gas separation and storage.
Keywords/Search Tags:Storage, Gas separation, CO2, Metal, Hydrogen, Interactions
Related items