Font Size: a A A

Atomic-scale calculations of interfacial structures and their properties in electronic materials

Posted on:2006-03-15Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Liang, TaoFull Text:PDF
GTID:1451390008957538Subject:Engineering
Abstract/Summary:
With the tremendous increase in computational power over the last two decades as well as the continuous shrinkage of Si-based Metal Oxide Semiconductor Field Effect Transistors (MOSFET), quantum mechanically based ab initio methods become indispensable tools in nano-scale device engineering. In this work, atomistic simulations including ab initio, nudged elastic band (NEB) and kinetic Monte Carlo methods have been used to (1) calculate the dopant segregation energy at silicon/gate oxide interfaces; (2) characterize the Si:Ge/SiO2 interfacial structure; (3) study the effects of impurity atoms on the diffusion process at Al and Al(Cu) grain boundaries.; Using VASP, an ab initio simulation package, we calculated B segregation energy at different atomic sites in perfect and defected Si/SiO 2 interfaces and arsenic segregation energy in Si/LaAlO3 structures.{09}With the presence of O vacancies and H in B doped systems, the predicted segregation energy is 0.85 eV for neutral systems and 1.12 eV for negatively charged systems, which is consistent with experimental measurements (0.51 to 1.47 eV). Recent ab initio structure calculations have examined the stability of various Si(001)/LaAlO3 interfaces and find that a LaO terminated interface with La deficiency or perfect stoichiometry depending on oxygen partial pressure has the lowest energy. Focussing on the La deficient Si/LaAlO3 interfacial structure, we find that the arsenic prefers energetically not to segregate into LaAlO3 nor does it pile up in front of the interface.; In combation of atomic-resolution Z-contrast imaging and electron energy loss spectroscopy (EELS), we theorectically calculated the band structure and EELS of a Ge/SiO2 interface. We actually found a chemically abrupt Ge/SiO2 interface, which has never been reported before and which is quite desirable for applications. Furthermore, we formulated a kinetic Monte Carlo model to simulate the oxidation process of Ge ion-implanted Si. Our modeling suggests the presence of small amounts of Ge in the oxide, which might be the major cause of worsened device performance of the 'perfect' Ge/SiO2 interface.; Using nudged elastic band (NEB) method, we systematically calculate the vacancy formation, diffusion activation energy and pre-exponential diffusion factor at pure and Cu doped Al grain boundaries. Though grain boundary diffusion is still much faster than that of bulk, adding small amounts of Cu can dramatically improve the electromigration reliability of Al interconnects. (Abstract shortened by UMI.)...
Keywords/Search Tags:Structure, Segregation energy, Ab initio, Interfacial
Related items