Font Size: a A A

Determination of local atomic arrangements in a bulk-immiscible surface alloy

Posted on:2006-01-17Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Witkowski, Kristine RoseFull Text:PDF
GTID:1451390008961996Subject:Engineering
Abstract/Summary:
Surface alloys are two-dimensional phases confined to near-surface regions, and are known to form from atomic species that are immiscible in the bulk. In order to achieve a better understanding of this phenomenon, it is necessary to be able to accurately determine the bond lengths present within the surface alloy. The present work focuses on surface alloying in the bulk-immiscible Au-Ni system, which forms surface alloy phases that are amongst the most studied to date. First principles electronic density functional theory calculations were conducted for both "monomer" (single Au atom), and "dimer" (pair of Au atoms) surface alloying models for the Au-Ni(110) surface. Both of the models exhibited surface interlayer contractions and expansions similar to those reported for a Ni(110) surface. The resulting atomic positions corresponded to Au-Ni bond lengths of 2.61-2.80 A in the monomer model and 2.54-2.84 A in the dimer model. Surface extended x-ray absorption fine structure (SEXAFS) measurements were taken from Au-Co11Ni89(110) surface alloys. The software program FEFF8 was used in combination with the first principles calculated atomic positions for the surface alloy models to simulate the SEXAFS from each of the surface alloy models. Fits were conducted from these models resulting in the determination of Au-Ni bond lengths of 2.55-2.74 A with the monomer model, and 2.46-2.76 A with the dimer model.; The present work features the first theoretical first principles study of all of the sub-monolayer structures of the Au-Ni(110) system. This work was also the first to employ DFT calculated atomic positions as initial models for simulating theoretical SEXAFS spectra to assist in the fitting of experimental measurements. In doing this, the theoretical calculations allowed for a much better starting point in the fits, while the results from the fits gave an indication to the strengths and weaknesses of the surface calculations, since they highlighted an apparent slight over-estimation of the Au-Ni bond lengths within the theoretical calculations.
Keywords/Search Tags:Surface, Atomic, Au-ni bond lengths, Calculations, Theoretical
Related items