Font Size: a A A

A Study on the Welding Characteristics of Tailor Welded Blank Metal Sheets Using GTAW and Laser Welding

Posted on:2013-09-15Degree:Ph.DType:Dissertation
University:Lehigh UniversityCandidate:Thasanaraphan, PornsakFull Text:PDF
GTID:1451390008965829Subject:Applied mechanics
Abstract/Summary:
In this study, a computational and experimental effort was carried out to qualitatively understand the weld pool shape, distortion and residual stress for continuous laser welding and manual pulsed gas metal arc welding. For all the welding simulations given in this dissertation, a welding specific finite element package, SYSWELD, is used. This research focuses on the welding behavior observed in light-weight metal structures known as the tailor-welded blanks, TWBs. They are a combination of two or more metal sheets with different thickness and/or different materials that are welded together in a single plane prior to forming, e.g., stamping. They made from the low carbon steel. As laser welding experiment results show, the weld pool shape at the top and bottom surface, is strongly influenced by surface tension, giving it a characteristic hourglass shape. In order to simulate the hourglass shape, a new volumetric heat source model was developed to predict the transient temperature profile and weld pool shape, including the effect of surface tension. Tailor welded blanks with different thicknesses were examined in the laser welding process. All major physical phenomena such as thermal conduction, heat radiation and convection heat losses are taken into account in the model development as well as temperature-dependant thermal and mechanical material properties. The model is validated for the case of butt joint welding of cold rolled steel sheets. The results of the numerical simulations provide temperature distributions representing the shape of the molten pool, distortion and residual stress with varying laser beam power and welding speed. It is demonstrated that the finite element simulation results are in good agreement with the experiment results. This includes the weld pool shape and sheet metal distortion. While there is no experimental data to compare directly with residual stress results, the distorted shape provides an indirect measure of the welding residual stresses.;The welding details such as clamping, butt joint configuration, material, sample thickness are similar for both the laser welding process and the manual pulsed GTAW process. Also as same metallurgical investigation, the weld pool shape displays wider full penetration without the effect of surface tension. The double ellipsoid volumetric heat source is applied in the finite element simulation to determine the temperature distribution, distortion and residual stress. The simulation results are compared with the experimental results and show good agreement. In addition, the results from the laser welding process are compared to the equivalent results from the GTAW process in the order to better understand the fundamental differences between these two welding processes.
Keywords/Search Tags:Welding, GTAW, Results, Metal, Sheets, Residual stress, Distortion
Related items