Font Size: a A A

Development of a numerical procedure for mixed mode K-solutions and fatigue crack growth in FCC single crystal superalloys

Posted on:2006-11-07Degree:Ph.DType:Dissertation
University:University of FloridaCandidate:Ranjan, SrikantFull Text:PDF
GTID:1451390008976014Subject:Engineering
Abstract/Summary:
Fatigue-induced failures in aircraft gas turbine and rocket engine turbopump blades and vanes are a pervasive problem. Turbine blades and vanes represent perhaps the most demanding structural applications due to the combination of high operating temperature, corrosive environment, high monotonic and cyclic stresses, long expected component lifetimes and the enormous consequence of structural failure. Single crystal nickel-base superalloy turbine blades are being utilized in rocket engine turbopumps and jet engines because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. These materials have orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Computation of stress intensity factors (SIFs) and the ability to model fatigue crack growth rate at single crystal cracks subject to mixed-mode loading conditions are important parts of developing a mechanistically based life prediction for these complex alloys.; A general numerical procedure has been developed to calculate SIFs for a crack in a general anisotropic linear elastic material subject to mixed-mode loading conditions, using three-dimensional finite element analysis (FEA). The procedure does not require an a priori assumption of plane stress or plane strain conditions. The SIFs KI, KII, and KIII are shown to be a complex function of the coupled 3D crack tip displacement field. A comprehensive study of variation of SIFs as a function of crystallographic orientation, crack length, and mode-mixity ratios is presented, based on the 3D elastic orthotropic finite element modeling of tensile and Brazilian Disc (BD) specimens in specific crystal orientations. Variation of SIF through the thickness of the specimens is also analyzed.; The resolved shear stress intensity coefficient or effective SIF, Krss, can be computed as a function of crack tip SIFs and the resolved shear stress on primary slip planes. The maximum value of Krss and DeltaKrss was found to determine the crack growth direction and the fatigue crack growth rate respectively. The fatigue crack driving force parameter, DeltaK rss, forms an important multiaxial fatigue damage parameter that can be used to predict life in superalloy components.
Keywords/Search Tags:Fatigue, Single crystal, Procedure
Related items