Font Size: a A A

Control of Orientation and Morphology of Crystals Grown Under Organic Templates

Posted on:2013-03-21Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Stripe, BenjaminFull Text:PDF
GTID:1451390008985580Subject:Chemistry
Abstract/Summary:
Living creatures demonstrate an extraordinary ability to both grow and control the growth of inorganic crystals. These biominerals are found almost everywhere in nature from simple plants and plankton to our own teeth and bones. A great deal of research has been focused on how living creatures are able to achieve such control over the shape, size, orientation, and arrangement of these biominerals. Many studies have been done demonstrating the effects the presence of organic molecules can have on the morphology of nucleating inorganic crystals. These studies have led to the use of ordered arrays of biological molecules as templates to select the orientation of the crystals. Such experiments have had amazing success cataloging monolayers, orientations and morphologies of crystals grown beneath them. However, despite several decades of work, the exact mechanisms by which the orientation and morphology of crystals is selected by organic templates are still not known.;The present study attempts to explain the complex interactions that take place at the template surface and decide the orientations and morphologies of the crystals that nucleate there. To do this, scanning electron microscopy (SEM), grazing incidence x-ray diffraction (GID), and x-ray reflectivity have been used to probe the templates and nucleating crystals in situ.;The experiments described here seek to move beyond the well-studied two-component systems. In many of these two-component systems a single template and a single type of crystal are grown, and often many claims and comparisons are made about monolayer charge, crystal surface energies, stereochemical recognition, and lattice matches. However, almost all of the claims and comparisons are between systems that are different enough that assumptions about relative charge, strain, recognition, and lattice dynamics are either unfounded or poorly supported. To bridge this gap in the comparison of these different two-component systems the studies presented here are tunable three-component systems. These experiments allow for either continuously adjusting the template by means of two miscible monolayers or adjusting the growing crystals by incorporation of secondary ions. In either case, the idea is the same: we can more accurately compare two-component systems and isolate the controlling factor in the selection of orientation and morphology of the nucleating crystals.;The results of these studies have shown that there is a complex interplay of charge, lattice parameters and kinetics. Despite this, we have been able to show that well-oriented growth of single non-dendritic crystals is limited to a fairly small range of surface charges and relative growth kinetics. Within this range, variations in the growing crystals can be seen based on changes in the average lattice parameters despite there being no evidence of direct epitaxy. Theories have evolved around the idea of stereochemical matching between the template and nucleating surface. These theories correlate the template molecular tilt to the orientation relative to the nucleation plane. However, these theories are not supported by the results presented in this manuscript. The data presented in this manuscript are suggestive of far more complex interfacial interactions involving an intermediary amorphous precursor, or possible networks of hydrated or hydrogen bonded ions than has been suggested in previous studies. Excitingly, it appears to be possible to control the selection of orientation using these multicomponent systems despite the complex interactions at the surface.
Keywords/Search Tags:Crystals, Orientation, Organic, Template, Systems, Surface, Grown, Complex
Related items