Font Size: a A A

Compressive behavior of kinking nonlinear elastic solids: Titanium silicon carbide, graphite, mica and boron nitride

Posted on:2005-07-07Degree:Ph.DType:Dissertation
University:Drexel UniversityCandidate:Zhen, TiejunFull Text:PDF
GTID:1451390008988100Subject:Engineering
Abstract/Summary:
Dislocation-based deformation in crystalline solids is almost always plastic. Once dislocations are generated they entangle and render the process irreversible. In our recent work we show that this does not apply to a new class of materials, best characterized as kinking nonlinear elastic (KNE) solids. KNE solids include the MAX phases, mica, graphite, boron nitride, so called nonlinear mesoscopic elastic (NME) solids discussed in geological literature and most probably ice. The MAX phases are a new class of layered machinable ternary carbides and nitrides, with the chemical formula M n+1AXn, where M is an early transition metal, A is an A-group element (mostly IIIA and IVA) and X is C or N.; The compressive loading-unloading stress-strain curves of KNE solids in the elastic regime outline nonlinear, fully reversible, reproducible, rate-independent, closed hysteresis loops whose shape and extent of energy dissipated are strongly influenced by grain size with the energy dissipated being significantly larger in the coarse-grained material. This unique property is attributed to the formation and annihilation of incipient kink bands (IKBs), defined to be thin plates of sheared material bounded by opposite walls of dislocations. As long as the dislocation walls remain attached, the response is fully reversible. Furthermore, because the dislocations are confined to the basal planes work hardening does not occur and the dislocations can move reversibly over relatively large distances. This kind of dislocation motion renders KNE solids potentially high damping material. The loss factor for Ti3SiC2, a prime member of KNE solids, is higher than most woods, and comparable to polypropylene and nylon.; At higher temperatures or stress, since the IKB dissociate and coalesce to form regular irreversible kink bands. The close hystesis loops are open, the response is strain-rate dependent, and cyclic hardening is observed even at 1200°C.
Keywords/Search Tags:Solids, Nonlinear, Elastic, Dislocations
Related items