Font Size: a A A

On the corrosion behavior and biocompatibility of palladium-based dental alloys

Posted on:2005-08-28Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Sun, DeshengFull Text:PDF
GTID:1451390008988988Subject:Engineering
Abstract/Summary:
Palladium-based alloys have been used as dental restorative materials for about two decades with good clinical history. But there have been clinical case reports showing possible allergy effects from these alloys. The aim of this study was to characterize the corrosion behavior and mechanisms of several palladium-based dental alloys by potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe force microscopy/atomic force microscopy (SKPFM/AFM), and to evaluate their biocompatibility by a cell culture technique and an animal model.; Using SKPFM/AFM and scanning electron microscopy, the Ru-enriched phase from the use of ruthenium as a grain-refining element was identified as being slightly more noble than the palladium solid solution matrix in a high-palladium alloy. Other secondary precipitates that exist in the microstructures of these high-palladium alloys have minimal differences in Volta potential compared to the matrix. For high-palladium alloys, corrosion is generally uniform due to the predominant palladium content in the different phases. Potentiodynamic polarization and EIS have shown that representative palladium-silver alloys have low corrosion tendency and high corrosion resistance, which are equivalent to a well-known high-noble gold-palladium alloy in simulated body fluid and oral environments. The palladium-silver alloys tested are resistant to chloride ion corrosion. Passivation and dealloying have been identified for all of the tested palladium-silver alloys. The great similarity in corrosion behavior among the palladium-silver alloys is attributed to their similar chemical compositions. The variation in microstructures of palladium-silver alloys tested does not cause significant difference in corrosion behavior. The corrosion resistance of these palladium-silver alloys at elevated potentials relevant to oral environment is still satisfactory.; The release of elements from representative dental palladium alloys into cell culture media did not significantly affect the proliferation and viability of human fibroblast cells. Subcutaneous implantation of samples of one high-palladium alloy, one palladium-silver alloy and a gold alloy into mice did not cause any significant histological change in their skin and spleen. The presence of an oxide layer from dental laboratory processing of these alloys did not cause any adverse reactions from the cells or animals. The biocompatibility of the dental palladium-based alloys evaluated by the cell culture and animal models is satisfactory, suggesting that these alloys are safe for clinical usage.
Keywords/Search Tags:Alloys, Dental, Corrosion, Cell culture, Biocompatibility
Related items