Font Size: a A A

Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

Posted on:2012-05-17Degree:Ph.DType:Dissertation
University:North Carolina State UniversityCandidate:Gonzalez, Ronalds WFull Text:PDF
GTID:1451390008993773Subject:Alternative Energy
Abstract/Summary:
Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies.;In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply.;In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined.;In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic and supply chain models specifically for biomass to bioenergy production. The study suggest that this species can be profitably managed for biomass production with rotation length of 11 to 12 years and with a stand tree density of 1,200 trees per acre. Optimum rotation length is greatly affected by seedlings costs and biomass productivity.;In the fourth study, a evaluation of seven different feedstocks (loblolly pine, natural mixed hardwood, Eucalyptus, switchgrass, miscanthus, corn stover and sweet sorghum) is made in terms of supply chain, biomass delivered costs, dollar per ton of carbohydrate and dollar per million BTU delivered to a biorefinery. Forest feedstocks present better advantages in terms of a well established supply chain, year round supply and no need for biomass storage. In the same context biomass delivered costs, as well as cost to delivered one ton of carbohydrate and one million BTU is lower in forest feedstocks.;In the fifth study, conversion costs, profitability and sensitivity analysis for a novel pretreatment process, green liquor, are modeled for ethanol production with loblolly pine, natural mixed hardwood and Eucalyptus as feedstocks, evaluated in two investment scenarios: green field and repurposing of an old kraft pulp mill. Better financial returns are perceived in the natural hardwood - repurposing scenario, mainly due to lower CAPEX and lower enzyme charge and cost.;In the sixth study, conversion cost, CAPEX, ethanol yield and profitability for the thermochemical process (indirect gasification and production of mixed alcohol) is simulated for loblolly pine, natural hardwood, eucalyptus, corn stover and switchgrass. Higher ethanol yield with forest feedstock (due to higher content of %C and %H) result in better economic performance, when compare to agriculture biomass.;This research indicates that forest feedstock outperform agriculture biomass in terms of delivered costs, supply chain, ethanol yield and process profitability. Loblolly pine seems to be more suitable for thermochemical processes, while hardwood suit better for biochemical conversion (based on the technologies studied).
Keywords/Search Tags:Biomass, Conversion, Supply chain, Cellulosic, Ethanol, Production, Hardwood, Loblolly pine
Related items