Font Size: a A A

Ultrasonic Nondestructive Characterization of Porous Materials

Posted on:2012-06-02Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Yang, NingliFull Text:PDF
GTID:1451390011952375Subject:Engineering
Abstract/Summary:
Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials.;The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation.;First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors.;Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples with varying water-to-cement ratios are presented in the dissertation.;The third part concerns the ultrasonic characterization of air-saturated porous materials. Using airborne reflected and transmitted ultrasonic experimental data, the open porosity and tortuosity value of a porous acrylic plate with graded void content and a polyimide foam are determined simultaneously. Experimental and numerical results of the method are presented.
Keywords/Search Tags:Porous, Ultrasonic, Materials, Porosity, Characterization, Experimental
Related items