Font Size: a A A

Insights to Superconducting Radio-Frequency Cavity Processing from First Principles Calculations and Spectroscopic Techniques

Posted on:2014-12-05Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Ford, Denise ChristineFull Text:PDF
GTID:1452390005988444Subject:Engineering
Abstract/Summary:
Insights to the fundamental processes that occur during the manufacturing of niobium superconducting radio-frequency (SRF) cavities are provided via analyses of density functional theory calculations and Raman, infrared, and nuclear magnetic resonance (NMR) spectra. I show that during electropolishing fluorine is bound and released by the reaction of the acid components in the solution: HF + H2SO4 HFSO3 + H2O. This result implies that new recipes can possibly be developed on the principle of controlled release of fluorine by a chemical reaction. I also show that NMR or Raman spectroscopy can be used to monitor the free fluorine when polishing with the standard electropolishing recipe.;Density functional theory was applied to calculate the properties of common processing impurities—hydrogen, oxygen, nitrogen, and carbon—in the niobium. These impurities lower the superconducting transition temperature of niobium, and hydride precipitates are at best weakly superconducting. I modeled several of the niobium hydride phases relevant to SRF cavities, and explain the phase changes in the niobium hydrogen system based on the charge transfer between niobium and hydrogen and the strain field inside of the niobium. I also present evidence for a niobium lattice vacancy serving as a nucleation center for hydride phase formation. In considering the other chemical impurities in niobium, I show that the absorption of oxygen into a niobium lattice vacancy is preferred over the absorption of hydrogen, which indicates that oxygen can block these phase nucleation centers. I also show that dissolved oxygen atoms can trap dissolved hydrogen atoms to prevent niobium hydride phase formation. Nitrogen and carbon were studied in less depth, but behaved similarly to oxygen. Based on these results and a literature survey, I propose a mechanism for the success of the low-temperature anneal applied to niobium SRF cavities.;Finally, I present the beginning of a model to describe magnetic impurities in niobium SRF cavities, which can cause a loss of local superconductivity. I calculated magnetic configurations of niobium hydrides and oxides, and show that stoichiometric hydride and oxide structures are nonmagnetic, but defective oxide structures retain local magnetic moments.
Keywords/Search Tags:Niobium, Superconducting, SRF, Show, Hydride, Magnetic
Related items