Font Size: a A A

The Energetics of Oxide Multilayer Systems: SOFC Cathode and Electrolyte Materials

Posted on:2012-06-16Degree:Ph.DType:Dissertation
University:University of California, DavisCandidate:Kemik, NihanFull Text:PDF
GTID:1452390008491045Subject:Engineering
Abstract/Summary:
Complex oxides are evoking a surge of scientific and technological interest due to the unexpected properties of their interfaces which have been shown to differ from the constituent materials. Layered oxide structures have found wide use in applications ranging from electronic and magnetic devices to solid oxide fuel cells (SOFCs). For devices such as SOFCs which utilize multilayers at elevated temperatures, it is critical to know the relative stabilities of these interfaces since they directly influence the device performance. In this work, we explored the energetics of two oxide multilayer systems which are relevant for SOFCs components using high temperature solution calorimetry and differential scanning calorimetry (DSC). The fundamental understanding of the interfacial and structural properties of multilayers combined with the information about phase stabilities is essential in materials selection for components for intermediate temperature SOFC's.;For cathode materials, we investigated the family of perovskite oxides, La0.7Sr0.3MO3, where M=Mn and Fe, as well as their solid solution phase. Manganites have been the most investigated cathode material, while the ferrites are also being considered for future use due to their thermodynamic stability and close thermal expansion coefficient with the commonly used electrolyte materials. For the bulk La0.7Sr0.3FexMn1-xO 3 solid solution, high temperature oxide melt drop solution calorimetry was performed to determine the enthalpies of formation from binary oxides and the enthalpy of mixing. It was shown that the symmetry of the perovskite structure, the valence of transition metal, and the energetics are highly interdependent and the balance between the different valence states of the Mn and Fe ions is the main factor in determining the energetics. The energetics of interfaces in multilayered structures was investigated by high temperature oxide melt solution calorimetry for the first time. The drop solution calorimetry results of La0.7Sr0.3MnO3(LSMO)/La0.7 Sr0.3FeO3(LSFO) multilayers and LSMO film are highly exothermic and differ from the bulk material with the same composition.;The magnetic and electronic properties of LSMO/LSFO superlattices are highly dependent on the thickness and the structure of the individual layers. Resonant X-Ray reflectivity (XRR) technique was utilized to characterize the structure of the LSMO/LSFO superlattices. It was shown that the XRR spectra taken at the Mn and Fe absorption edges can provide more structural information than the spectra at the X-ray energy of a conventional Cu source. With this non-destructive technique, we demonstrated the ability to compare the intermixing behavior and thickness regularity throughout the thickness of different superlattice structures.;For electrolyte materials, we studied the yttria stabilized zirconia (YSZ) /Al2O3 multilayer system. Differential scanning calorimetry (DSC) was used to study the crystallization of the YSZ layers to explore the effect of the interfaces on phase stabilities. It was observed that the crystallization temperature increased and the enthalpy became more exothermic as the interfacial area increased. This work demonstrated that DSC is a promising technique to study the thin film reactions and explore the interfacial enthalpies in oxide multilayer systems.
Keywords/Search Tags:Oxide, Energetics, Materials, DSC, Cathode, Electrolyte, Solution calorimetry, Interfaces
Related items