Font Size: a A A

Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas

Posted on:2005-01-15Degree:Ph.DType:Dissertation
University:The University of Wisconsin - MadisonCandidate:Comer, Kathryn JFull Text:PDF
GTID:1452390011952537Subject:Plasma physics
Abstract/Summary:
We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes.;We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted.;Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations.;Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent convergence.;The unexpected sensitivity to equilibrium (rather than wall) perturbations in the toroidal calculations is traced to the compressional Alfven wave energy contribution to the stability. Beyond a very small range of perturbations, second order terms in the expansion of compressional Alfven wave energy become large. We explored several methods of ameliorating these second order terms, but none improve results consistently or in a meaningful way.
Keywords/Search Tags:Stability, Perturbative technique, MHD, Plasma, Toroidal, Compressional alfven wave, Results
Related items