Font Size: a A A

Impaired Incretin Effects in Type 2 Diabetes: Mechanism and Therapeutic Implication

Posted on:2013-01-10Degree:Ph.DType:Dissertation
University:The Chinese University of Hong Kong (Hong Kong)Candidate:Kang, ZhanfangFull Text:PDF
GTID:1454390008471857Subject:Engineering
Abstract/Summary:
Incretin-based drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists (e.g. liraglutide and exenatide) and dipeptidyl peptidase-4 (DPP-4) inhibitors (e.g. sitagliptin and vildagliptin), which inhibit degrading intact GLP-1, have been a novel therapeutics for the treatment of type 2 diabetes. Type 2 diabetes mellitus (T2DM) is associated with reduced incretin effects. The underlying mechanism, however, is not well understood.;Our previous studies showed that hyperglycemia downregulates glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) which potentially contributes to the impaired incretin responses in cells. Whereas the effects of hyperlipidemia, another common clinical feature of T2DM, on GLP-1 response is largely unknown. In this study, I investigated the effects of free fatty acids (FFA) on incretin receptor signalings, and examined the glucose-lowering efficacy of incretin-based drugs in combination with lipid-lowering agents. I found that palmitate treatment decreased GLP-1R expression in rodent insulinoma cell lines, which was associated with impaired GLP-1 stimulated cAMP production and phosphorylation of CREB. Over-expression of GLP-1R restored the cAMP production and the phosphorylation of CREB. Treatment with bezafibrate or niacin in combination with des-fluoro-sitagliptin or exendin-4 produced more robust glycemic control associated with improved pancreatic islet morphology and islet cell function in db/db mice and HFD-fed mice.;On the other hand, chronic hyperglycemia and hyperlipidemia can cause a progressive deterioration in pancreatic beta-cell function and mass in patients with type 2 diabetes mellitus. It has been reported that the efficacy of incretin-based therapeutics is attenuated with the duration of diabetes. In our previous study, we have shown that hyperglycemia downregulates GLP-1 receptor which in turn may contribute to the impaired incretin effect in type 2 diabetes. In this study, I further investigated the efficacy of GLP-1 based drug exendin-4 in a rodent model of type 2 diabetes with different degrees of hyperglycemia and reduction of beta cell mass. I found that in moderate hyperglycemia (MH) group but not in severe hyperglycemia (SH) group, exendin-4 treatment significantly reduced fed glucose levels and plasma lipid profiles, improved glucose tolerance and glucose stimulated insulin secretion, and was associated with restored islets morphology and increased beta cell mass. Exendin-4 significantly decreased body weight gain and increased pancreatic mass both in MH and SH group. Although glucose levels were significantly reduced in MH group with exentin-4 treatment during insulin tolerance test, exendin-4 had no effects on HORM-IR, food intake, and insulin stimulated p-AKT/p-GSK in liver and muscle in both MH and SH group.;In summary, my findings highlight the importance of comprehensive lipid and glycemic control in type 2 diabetes mellitus. I found that factors including hyperglycemia and hyperlipidemia that cause progressive decline in beta cell failure impaired beta cell GLP-1R signaling as well as the efficacy of incretin-based therapies. These results add to our knowledge regarding the mechanism of incretin-based therapy in improving glycemic control in type 2 diabetic patients and provide new insights in designing treatment strategies including incretin-based therapy for type 2 diabetic patients.
Keywords/Search Tags:Incretin, Type, GLP-1, Diabetes, Effects, Beta cell, Mechanism, Receptor
Related items