Font Size: a A A

Infrasound wave propagation over near-regional and tele-infrasonic distances

Posted on:2006-07-03Degree:Ph.DType:Dissertation
University:Southern Methodist UniversityCandidate:McKenna, Sara Mihan HouseFull Text:PDF
GTID:1454390008474548Subject:Geophysics
Abstract/Summary:
Infrasound research is experiencing a renaissance due to advances in acoustic propagation calculations and a deeper understanding of the atmosphere. Uniquely combining observed data and propagation modeling, the three papers presented here quantify the effects of the atmosphere on propagation from a variety of sources at distances from less than 100 km (near-regional distances) to nearly 600 km (tele-infrasonic distances) for sources on the surface and at altitude (63 km). Paper one analyzes infrasound signals recorded at the CHNAR seismo-acoustic array. These sources are predominantly on the surface, result from human activity and occur closer than 250 km away. Propagation for these near-regional distances depends on tropospheric weather patterns and temporally varying, low-altitude ducts. To predict the observed arrivals local meteorological data is necessary; MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and NRL-G2S (Naval Research Laboratory Ground To Space) did not predict the observed arrivals. Paper two is the first time a waveform from an explosion at height has ever been reproduced; the recorded waveform was from the break-up of the space shuttle Columbia. For the tele-infrasonic normal mode modeling, MSIS/HWM and NRL-G2S yielded identical waveform results. Paper three looks at the tele-infrasonic path between an iron mine in Minnesota and an infrasound array in Manitoba, Canada. Over a four month period, the IS-10 infrasound array provided infrasound data to compare to archived blast statistics. NRL-G2S better reproduced the observed arrival travel times than MSIS/HWM; whether or not arrivals were observed depended on the noise field at the infrasound array. For any distance range or source height, accurate atmospheric parameters from the corresponding propagation paths are necessary to predict observed infrasound.
Keywords/Search Tags:Infrasound, Propagation, Distances, Observed, Tele-infrasonic, Near-regional
Related items