Font Size: a A A

Field desorption ionization Fourier transform ion cyclotron resonance mass spectrometry

Posted on:2005-08-02Degree:Ph.DType:Dissertation
University:The Florida State UniversityCandidate:Schaub, Tanner MichaelFull Text:PDF
GTID:1454390008997186Subject:Chemistry
Abstract/Summary:
The prime reasons for the wide utility and application of FT-ICR MS are the unmatched mass resolving power and mass accuracy that are feasible with the technique. Field desorption ionization (FD) provides a means to access nonvolatile nonpolar petrochemical constituents from heavy petroleum. The development of field desorption ionization FT-ICR mass spectrometry for nonpolar petrochemical analysis began with a proof of concept achieved by the successful interface of a commercial field desorption source with our 9.4 T FT-ICR instrument, which is typically configured for electrospray ionization. The results of that experiment are the subject of Chapter 2.;To further identify the value of high-resolution FD FT-ICR MS we have built a complete actively-shielded 9.4 T FD FT-ICR mass spectrometer that is now available daily at the NSF High-Field FT-ICR MS Facility of the National High Magnetic Field Laboratory. Design details and operation methodology for this instrument are discussed in Chapter 3. That report includes a model compound study and emitter degradation scanning electron microscopy survey that provide the basis for interpretation of an example broadband FD FT-ICR crude oil mass spectrum.;Field desorption ionization MS is typically a pulsed ionization technique, where ions are produced transiently and analyzed, after which sample is reapplied. Operation of the ion source in this manner inhibits the ability to sum a large (>20) number of petroleum mass spectra (as is useful and common for our ESI FT-ICR petrochemical analyses). In order to ensemble average, we have developed a novel FD sample introduction technique, termed continuous flow field desorption (CF FD), which converts the pulsed FD ion source to a continuous ion generator. The continuous flow FD technique is detailed in Chapter 4.;In Chapter 5, we apply continuous flow FD FT-ICR to the analysis of four aromatic fractions from ExxonMobil refinery process streams. Continuous flow sample introduction allowed summation of 75 time domain signals for each of these samples and yielded spectra with extremely high mass accuracy at high mass resolving power. From the elemental composition assignments, we discuss heteroatom distribution, degree of unsaturation, and carbon number distribution for numerous observed chemical classes and types. This analysis provides insight into the specificity of the refinery operations.;As is common at a user facility, application of the FD FT-ICR mass spectrometer has involved collaboration with numerous external research groups including those from ExxonMobil Research and Engineering, NewFields Environmental Forensics Practice, the Vienna Institute of Technology, the National Oceanographic and Atmospheric Administration (NOAA), and the University of Birmingham in England. It is often difficult to predict the outcome of such ventures and while each of the first five chapters include published (or submitted) data, Chapter 6 includes an account of two unpublished external user projects for which FD FT-ICR MS was successfully performed within our laboratory. Those projects are FD FT-ICR MS characterization of natural hydrocarbon input to the northern Gulf of Alaska (with NOAA) and analysis of coal-tars subjected to various thermal treatments (with NewFields). Here, we use that data as the basis for discussion of obstacles, shortcomings, and future directions for the application of FD FT-ICR MS technology and to provide a complete account of the FD FT-ICR MS research projects performed to date. (Abstract shortened by UMI.)...
Keywords/Search Tags:FT-ICR MS, Mass, Field desorption ionization, Continuous flow
Related items
Studies of laser desorption and detection from liquid and polymeric matrices using multiphoton ionization in supersonic jet/mass spectrometry
Laser desorption-atmospheric pressure chemical ionization-mass spectrometry: A new ionization method based on existing themes
A basic study of lipsticks utilizing microspectrophotometry, laser desorption/ionization mass spectrometry, and Fourier transform infrared spectroscopy
Rapidly Identification Study Of Processed Atractylodes,Cornus Officinalis And Magnolia Officinalis By Ambient Ionization Mass Spectrometry
Polymer modification with matrices for matrix-assisted laser desorption/ionization mass spectrometry and with aptamers for surface-enhanced laser desorption/ionization mass spectrometry
Advance Of Proteomics And Its Application In Gynecological Malignancy
Matrix-Assisted Laser Desorption Electrospray Ionization: Fundamental Principles and Applications Towards Molecular Imaging
Identification by laser desorption ionization mass spectroscopy of large fullerenes formed during the growth of single-walled carbon nanotubes in the HiPco process
Laser desorption/laser ionization time-of-flight mass spectrometry instrument design and investigation of the desorption and ionization mechanisms of matrix-assisted laser desorption/ionization
10 Development and characterization of an atmospheric pressure ionization source matrix-assisted laser desorption electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry for analysis of biological macromolecules