Font Size: a A A

An evaluation of the precipitation distribution associated with landfalling tropical systems

Posted on:2004-03-18Degree:Ph.DType:Dissertation
University:State University of New York at AlbanyCandidate:Atallah, Eyad HFull Text:PDF
GTID:1460390011962399Subject:Physics
Abstract/Summary:PDF Full Text Request
Several recent landfalling tropical cyclones (e.g. Dennis, Floyd, and Irene 1999) have highlighted a need for a refinement in the forecasting paradigms and techniques in the area of quantitative precipitation forecasting (QPF). Accordingly, several landfalling tropical storms were composited based on the precipitation distribution relative to the cyclone track (i.e. left of, right of, or along track), and cases from each composite were examined using a potential vorticity (PV) and quasi-geostrophic (QG) framework.; Results indicate that a left of track precipitation distribution (e.g. Floyd 1999) is characteristic of tropical systems undergoing extratropical transition (ET). In these cases, a significant positively tilted mid-latitude trough approaches the cyclone from the northwest, shifting precipitation to the north-northwest of the cyclone. PV redistribution through diabatic heating then leads to enhanced ridging over and downstream of the tropical cyclone resulting in an increase in the cyclonic advection of vorticity by the thermal wind.; Precipitation distribution is heaviest to the right of the track of the storm when downstream intensification of the ridge is important (e.g. David, 1979). Enhancement of the downstream ridge ahead of a weak mid-latitude trough accentuates the PV gradient between the tropical system and the downstream ridge. This, in combination with a slight acceleration in the movement of the tropical system, produces a region of enhanced positive PV advection (implied ascent) between the tropical system and the downstream ridge. Precipitation is heaviest along/very near the track of a storm when shear values are low and/or oriented along the track of the tropical cyclone (e.g. Fran 1996). Without large scale forcing for vertical motion associated with a midlatitude trough, most of the ascent remains concentrated near the storm core in the region of greatest diabatic heating and maximum wind speeds.; In all cases, the diabatic enhancement of the downstream ridge is instrumental in the redistribution of precipitation about the tropical system. Unfortunately, this process is not well simulated in operational forecast models, leading to systematic errors in QPF.
Keywords/Search Tags:Tropical, Precipitation distribution, Cyclone, Downstream ridge
PDF Full Text Request
Related items