Font Size: a A A

Detection and orbit determination of tethered satellite systems

Posted on:2004-07-15Degree:Ph.DType:Dissertation
University:Auburn UniversityCandidate:Choe, Nammi JoFull Text:PDF
GTID:1460390011976942Subject:Engineering
Abstract/Summary:
A systematic algorithm for determining which satellites are tether-connected is described. It is assumed that observations in the forms of range, azimuth and elevation data, for several satellites, including singles, two-satellite tethered systems, and three-satellite tethered systems are available. The detection process is performed using the dynamic model and a minimum variance batch filter to process simulated observations over a period of ten minutes. In the process, the estimated acceleration per unit length between pairs of satellites due to a tether is assumed to be constant during this "short arc" observation period. The values of acceleration per unit length are used as indicators of which pairs of satellites are connected. Use of the algorithm is illustrated by applying it to a set of nine satellites that includes two tethered pairs. For small librational motion of the tethered pairs, values of the constraint accelerations per unit length that are large relative to zero were obtained. On the other hand, values very close to zero were obtained for un-tethered pairs. These results indicate that non-librating, two-satellite tethered systems can be successfully identified (i.e. "detected") when perfect and small-level noise corrupted observations are available. However, identification of two-satellite tethered systems with the large libration angle, or those with a very short tether when medium and large levels of noise are present is more difficult. The detection of a three-satellite tethered system was also performed with the same algorithm.; After detection of a two-satellite tethered system (or three-satellite) is performed, its orbit may be determined by using long arcs of observations (over one orbital period). In the long arc estimation process used herein, the constraint acceleration per unit length is considered to be a time-varying variable. For an exemplary set of satellites, results for long arc estimations were obtained. Since observation data for both satellites in a tethered system were used and few approximations of the tether dynamics were made, the results are very accurate.; The orbital motion of the three-satellite tether system was found to be similar to that of two-satellite tether system when the librational motion was small. The major difference was that larger tether accelerations were present due to another tether connected body.; It should be relatively easy to incorporate the new method for detection and motion determination developed in this study into a general orbit determination process. (Abstract shortened by UMI.)...
Keywords/Search Tags:Tether, System, Detection, Determination, Orbit, Acceleration per unit length, Satellites, Process
Related items