Font Size: a A A

Electrochemical and in situ spectroscopic studies of materials of relevance to energy storage and electrocatalysis

Posted on:2003-01-18Degree:Ph.DType:Dissertation
University:Case Western Reserve UniversityCandidate:Mo, YiboFull Text:PDF
GTID:1461390011984299Subject:Chemistry
Abstract/Summary:
In situ X-ray absorption (XAS), surface enhanced Raman spectroscopy (SERS) and rotating ring disk electrode techniques have been employed for the characterization of materials of relevance to electrochemical energy storage and electrocatalysis. In particular, analysis of in situ Ir LIII-edge extended X-ray absorption fine structure (EXAFS) of IrO2 films electrodeposited on Au substrates yielded Ir-O bond lengths decreasing in the sequence 2.02, 1.97 and 1.93 Å, for Ir3+, Ir4+ and Ir5+ sites, respectively. Although features consistent with the presence of crystalline IrO2 in the highly hydrated films were found from in situ SERS, the lack of intense shells in the FT of the EXAFS function beyond the nearest oxygen neighbors indicates that the films by and large do not display long range order. In similar studies, the Fourier transform of the k3-weighted Ru K-edge EXAFS of electrodeposited RuO2 films recorded in situ were characterized by two shells attributed to Ru-O and Ru-Ru interactions at 1.94(1) and 3.12(2) Å, in agreement with results obtained ex situ for Ru4+ in hydrous RuO2, whereas films in the reduced state yielded a single Ru-O interaction shell at 2.02(1) Å.; Extensions of these in situ XAS to the study of electrocatalysts for the nitrite reduction made it possible to identify and characterize the electronic and structural properties of a nitrosyl iron porphyrin adduct adsorbed on an electrode surface via the analysis of Fe K-edge XAS data.; The effects of Se and S ad-atoms on the electrocatalytic activity of Pt electrodes have been examined using RRDE techniques. In acid, within a rather narrow range of coverages, both S- and Se-modified Pt surfaces promote the 2-electron reduction of dioxygen to hydrogen peroxide at ca. 100% faradaic efficiency over a wide potential region. Also developed were methods for immobilizing unsupported dispersed high area Pt particles a glassy carbon (GC) disk of a rotating Pt(ring)/GC(disk) electrode assembly allowing electrochemical measurements to be performed under forced convection with only minimal losses of Pt from the surface.
Keywords/Search Tags:Situ, Electrochemical, XAS, Surface, Electrode
Related items