Font Size: a A A

On the physical and geometrical properties responsible for the highly absorbing nature of black materials in the infrared

Posted on:2003-03-17Degree:Ph.DType:Dissertation
University:The Johns Hopkins UniversityCandidate:Meier, Steven RobertFull Text:PDF
GTID:1461390011985442Subject:Engineering
Abstract/Summary:
Black surfaces are of paramount importance in the design of terrestrial and space-borne optical systems. Optical designers can choose from a variety of black materials to suppress reflected and scattered stray light. Among these applications are the suppression of unwanted reflection or scattering of light in optical systems, solar collectors, blackbody absorbers, thermal insulators, telescope housing and baffles where stray light reduction is vital, and cold stops and light shields for infrared detectors.; The physical mechanisms responsible for understanding the highly absorbing nature of black materials in the infrared spectral region are investigated in this dissertation. We present experimental data on the optical, surface, and constituent properties of black materials. In addition, we developed unique optical instrumentation to characterize the hemispherical reflectance and scattering properties of these materials as a function of incident angle and state of polarization. We compared the experimental data to theoretical rough surface scattering models to understand the absorption mechanisms of these black materials and found good agreement. Furthermore, results from a new, highly absorbing black material in the infrared wavelength regime, known as carbon aerogels, are presented and shown to be superior or equivalent to existing black materials used by optical designers. In addition, we presented a new cylindrical-spherical cavity enclosure and calculated the apparent emissivity along the bounding surfaces of this new cavity enclosure. To our knowledge, this was the first calculation of the apparent emissivity for a cavity enclosure with obscuration. Finally, we proposed several improvements for each individual black material in order to achieve even higher absorption levels.
Keywords/Search Tags:Black, Highly absorbing, Optical, Infrared
Related items