Font Size: a A A

Electrochemistry and spectroscopy of electrolytes and cathode materials in room-temperature ionic liquids

Posted on:2001-03-05Degree:Ph.DType:Dissertation
University:Miami UniversityCandidate:Ryan, David MartinFull Text:PDF
GTID:1461390014459497Subject:Chemistry
Abstract/Summary:
The demonstration of a stable, reversible, alkali metal anode is an important step in the development of practical secondary batteries using room temperature chloroaluminate molten salts as electrolytes. Such melts are made by mixing 1-ethyl-3-methylimidazolium chloride (EMIC) with aluminum chloride, and can be Lewis buffered by adding LiCl or NaCl. It has been shown previously that protons added to a sodium chloride buffered melt as 1-ethyl-3-methyfimidazolium hydrogen dichloride (EMIHCl2) provide a more negative voltage window and nearly reversible deposition-stripping behavior for sodium. It is reported here that triethanolamine hydrogen chloride is effective in widening the voltage window, allows the plating and stripping of both lithium and sodium, and is stable in buffered EMIC/AlCl3 melts for months. It is suggested that deprotonation of one ethanolic group of triethanolamine HCl is responsible for the effect. The electrochemistry and UV-visible spectroscopy of several vanadium oxides have been examined in room temperature melts. By varying the mole ratio of the two components, Lewis basic, neutral and acidic melts were made. Most oxides have very low solubility: V2O4 and V2O3 are insoluble and V2O5 has a solubility limit less than 5 mM, but the solubilities of the salts NaVO 3, Na3VO4, and NH4VO3, VOCl 3 and VOF3 are significantly higher. The electrochemistry of V2O5, NaVO3, Na3VO4, NH4VO3, VOCl3 and VOF3 is similar in neutral and acidic melts. In the neutral melt each compound shows an irreversible reduction at about 0.45V vs. an Al wire reference electrode. In an acidic melt (mole fraction AlCl3 = 0.55) each of these compounds exhibit additional reduction peaks at more positive potentials. Coulometric and spectroscopic data for the 0.45V reduction suggest that mixed oxidation state polyvanadates may be formed. Controlled potential coulometry demonstrated that the reduction at 0.45V was the reduction of V(V) to V(IV) and the more positive reduction peaks were caused by the reduction of some other species of V(V) present in the acidic melts.;New room temperature melts have been prepared by mixing Lewis acidic, VOCl3, with Lewis basic, EMIC. The new melts are dark red homogeneous liquids that are very conductive and easily reduced.
Keywords/Search Tags:Melts, Room, Electrochemistry, Temperature, Lewis
Related items