Font Size: a A A

Molecular engineering and characterization of self-assembled biorecognition surfaces

Posted on:2000-05-05Degree:Ph.DType:Dissertation
University:University of WashingtonCandidate:Pan, ShengFull Text:PDF
GTID:1461390014965680Subject:Engineering
Abstract/Summary:
The development of molecular engineering techniques for the fabrication of biomaterial surfaces is of importance in the field of biomaterials. It offers opportunities for better understanding of biological processes on material surfaces and rational design of contemporary biomaterials. Our work in this area aims to develop novel engineering strategies to design biorecognition surfaces via self-assembly and surface derivatization. Fundamental issues regarding self-assembled monolayer (SAM) structure, formation kinetics, and chemical derivatization were investigated systematically using electron spectroscopy for chemical analysis (ESCA), time-of-flight secondary ion mass spectrometry (TOF-SIMS), infrared reflection absorption spectroscopy (IRAS), atomic force microscopy (AFM), and contact angle measurements. Novel engineering concepts based on multifunctionality and statistical pattern matching were introduced and applied to develop biomimetic surfaces.; Our study illustrated that molecules underwent structural transition and orientation development during self-assembly formation, from a disordered, low-density, more liquid-like structure to a highly ordered, closed-packed crystalline-like structure. Surface properties, such as wettability and the reactivity of outermost functional groups can be related to film structure, packing density, as well as molecular orientation. Given the order and organization of SAMs, the accessibility and reactivity of the outermost functional groups, reaction kinetics, stoichiometry, and SAMs stability were studied systematically by surface derivatization of trifluoroacetic anhydride (TFAA). The TFAA derivatization reactions exhibited rapid kinetics on the hydroxyl-terminated SAMs. The data from complementary surface analytical techniques consistently indicated a nearly complete surface reaction. Biomimetic surfaces were made by random immobilization of amino acid of arginine (R), glycine (G), and aspartic acid (D) on well-defined SAMs. The surface reaction process was systematically characterized by ESCA. In vitro cell adhesion studies demonstrated that the designed surfaces had the capability to stimulate cell attachment and spreading, even in the absence of serum proteins. The biospecific recognition between the surface and the cell receptors was attributed to the appropriate chemical environment and statistical pattern matching between the randomly distributed R+G+D groups on the surface and cell receptors.
Keywords/Search Tags:Surface, Engineering, Molecular, Cell
Related items