Font Size: a A A

Fundamental mechanisms of oxidation of alkaline earth-bearing metal precursors: yttrium-barium-copper-silver-palladium and silver bariate

Posted on:2000-03-11Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Sitaraman, Vilayannur RFull Text:PDF
GTID:1461390014965864Subject:Engineering
Abstract/Summary:
Noble-metal-bearing metallic precursors can be selectively oxidized to yield oxide/noble metal composites. This processing method is investigated for producing 123/Ag-Pd laminates from a solid metallic Y-Ba-Cu-Ag-Pd precursor. A unique feature heretofore unnoticed is the external oxidation mechanism of Ba. The extent of external oxidation at 840C in a 3%H2-Ar atmosphere (PO2 10−19 atm.) as measured by a segregation factor, is higher for Ba than for Y. Combined with the fact that Ba does not have significant solid solubility in Ag, Cu or Pd, this means that a short circuit transport path is possible for transport of Ba through such metals as described in chapter 1. Since diffusion through grain boundaries, is fast, the effective permeability of Ba can be relatively high even though its solubility is low. This proposed mechanism is proven using a model system, the Ag5Ba intermetallic compound. Both internal and external oxidation has been demonstrated in this material. Grain boundary diffusion is demonstrated using Ag clad Ag 5Ba. Due to a change in the mechanism from external to internal oxidation of Y in Y-Ba-Cu-Ag-Pd alloys, the imbalance in the surface stoichiometry caused by Ba segregation is not easily removed. A mechanism proposed by Meijering for copper oxide dissolution, Cu migration and Cu reoxidation at the outer surface is also consistent with the microstructural observations in oxidized Y-Ba-Cu-Ag-Pd specimens.
Keywords/Search Tags:Oxidation, Mechanism
Related items