Font Size: a A A

A laboratory and field study of composite piles for bridge substructures

Posted on:2004-12-07Degree:Ph.DType:Dissertation
University:Virginia Polytechnic Institute and State UniversityCandidate:Pando, Miguel AFull Text:PDF
GTID:1462390011977228Subject:Geotechnology
Abstract/Summary:
Typically, foundation piles are made of materials such as steel, concrete, and timber. Problems associated with use of these traditional pile materials in harsh marine environments include steel corrosion, concrete deterioration, and marine borer attack on timber piles. It has been estimated that the U.S. spends over {dollar}1 billion annually in repair and replacement of waterfront piling systems. Such high repair and replacement costs have led several North American highway agencies and researchers to investigate the feasibility of using composite piles for load bearing applications, such as bridge substructures. As used here, the term "composite piles" refers to alternative pile types composed of fiber reinforced polymers (FRPs), recycled plastics, or hybrid materials. Composite piles may exhibit longer service lives and improved durability in harsh marine environments, thereby presenting the potential for substantially reduced total costs. Composite piles have been available in the North American market since the late 1980's, but have not yet gained wide acceptance in civil engineering practice. Potential disadvantages of composite piles are high initial cost and questions about engineering performance. At present, the initial cost of composite piles is generally greater than the initial cost of traditional piles. Performance questions relate to driving efficiency, axial stiffness, bending stiffness, durability, and surface friction. These questions exist because there is not a long-term track record of composite pile use and there is a scarcity of well-documented field tests on composite piles.; This research project was undertaken to investigate the engineering performance of composite piles as load-bearing foundation elements, specifically in bridge support applications. The objectives of this research are to: (1) evaluate the soil-pile interface behavior of five composite piles and two conventional piles, (2) evaluate the long-term durability of concrete-filled FRP composite piles, (3) evaluate the driveability and the axial and lateral load behavior of concrete-filled FRP composite piles, steel-reinforced recycled plastic composite piles, and prestressed concrete piles through field tests and analyses, and (4) design and implement a long-term monitoring program for composite and conventional prestressed concrete piles supporting a bridge at the Route 351 crossing of the Hampton River in Virginia. A summary of the main findings corresponding to each of these objectives is provided below.; A laboratory program of interface testing was performed using two types of sands and seven pile surfaces (five composite piles and two conventional piles). The interface behavior of the different pile surfaces was studied within a geotribology framework that investigated the influence of surface topography, interface hardness, and particle size and shape. In general, the interface friction angles, both peak and residual, were found to increase with increasing relative asperity height and decreasing relative asperity spacing. The interface shear tests for the three pile types tested at the Route 351 bridge showed that, for medium dense, subrounded to rounded sand, with a mean particle size of 0.5 mm, the residual interface friction angles are 27.3, 24.9, and 27.7 degrees for the FRP composite pile, the recycled plastic pile, and the prestressed concrete pile, respectively. Interface shear tests on these same piles using a medium dense, subangular to angular sand, with a mean particle size of 0.18 mm, resulted in residual interface friction angles of 29.3, 28.8, and 28.0 degrees for the FRP composite pile, the recycled plastic pile, and the prestressed concrete pile, respectively.; A laboratory durability study was completed for the FRP shells of concrete-filled FRP composite piles. Moisture absorption at room temperature caused strength and stiffness degradations of up to 25% in the FRP tubes. Exposure to freeze-thaw cycles was found t...
Keywords/Search Tags:Piles, Bridge, Interface friction angles, Field, Laboratory
Related items