Font Size: a A A

Shock detachment process on cones in hypervelocity flows

Posted on:2000-04-07Degree:Ph.DType:Dissertation
University:California Institute of TechnologyCandidate:Leyva, Ivett AlejandraFull Text:PDF
GTID:1462390014465730Subject:Engineering
Abstract/Summary:
The shock detachment process on cones in hypervelocity flows is one of the most sensitive flows to relaxation effects. The critical angle for shock detachment under frozen conditions can be very different from the critical angle under chemical and thermal equilibrium. The rate of increase of the detachment distance with cone angle is also affected by the relaxation rate.; The purpose of this study is to explain the effects of nonequilibrium on the shock detachment distance and its growth rate on cones in hypervelocity flows. The study consists of an experimental and a computational program. The experimental part has been carried out at Caltech's hypervelocity reflected shock tunnel. Six free-stream conditions were chosen, using both N2 and CO2 as test gases. The experimental data obtained are holographic interferograms, surface temperature, and pressure measurements. The code employed for the numerical simulations is a Navier-Stokes solver that can account for thermal and chemical nonequilibrium in axisymmetric flows.; The data obtained for the shock detachment distance confirms a previous theoretical model that predicts the detachment distance will grow more slowly for relaxing flows than for frozen or equilibrium flows. This difference is due to the behavior of the sonic line inside the shock layer. Different growth rates result when the detachment distance is controlled by the diameter of the cone (frozen and equilibrium cases) than when it is controlled by the relaxation length (nonequilibrium flows). The behavior of the detachment distance from the frozen to equilibrium limits for a given cone half-angle and free-stream condition has also been studied. It was confirmed that the ratio of the detachment distance to the cone diameter is constant in the two extremes and rapidly switches from one value to the other for cone diameters of about 2 cm to 16 cm. The experimental interferograms are also compared with numerical ones in terms of the detachment distance, the number of fringes in the shock layer, and the shape of the fringes.; The heat flux traces obtained from the temperature measurements show different behaviors for the attached and detached cases, but these effects can be related to the conditions at the edge of and inside the boundary layer and to the Reynolds number of the flow rather than to nonequilibrium effects. The pressure measurements were insensitive to the degree of nonequilibrium.
Keywords/Search Tags:Detachment, Flows, Cone, Hypervelocity, Effects, Nonequilibrium
Related items