Font Size: a A A

Unsteady flows in a two-dimensional linear cascade with low-pressure turbine blades

Posted on:2000-05-12Degree:Ph.DType:Dissertation
University:The Ohio State UniversityCandidate:Murawski, Christopher GabrielFull Text:PDF
GTID:1462390014964673Subject:Engineering
Abstract/Summary:PDF Full Text Request
Experimental studies of unsteady flow phenomena in a low pressure turbine linear cascade are presented. Turbine engine flow passages contain numerous loss mechanisms. The loss mechanisms investigated in this study are low Reynolds number and freestream turbulence effects, secondary flows and wake interactions. Also, a method is implemented which decreases the profile losses due to low Reynolds number effects.; The results are presented in three segments. First, the effects of Reynolds number and freestream turbulence intensity on the low-pressure turbine cascade blade are investigated. The condition of the blade's boundary layer is the leading factor controlling the level of profile loss. The losses from the airfoil decrease as the Reynolds number and freestream turbulence increase due to a decrease in the size of the separation zone on the suction side of the turbine airfoil.; Boundary layer separation occurs on the suction surface of the turbine. Changes to this region are achieved when attaching different length tail sets to the turbine airfoils which alters the axial chord of each blade. A clear improvement on suction side boundary layer behavior at low Reynolds numbers was seen when the tail extensions were shorter than about 9% of axial chord.; Finally, the effect wake disturbance frequency on the secondary flow vortex structure in a turbine cascade is studied. Cylinders are traversed across the front of the blade row to simulate turbine blade disturbances. The response of the secondary flow structure to the movement of the wake generator shuttle with zero, one and multiple wake generator rods are presented. Multiple wake disturbance frequencies are varied from 12 Hz to 52 Hz. Multiple wake disturbance frequency below the axial chord flow frequency enable the secondary flow vortex structure to re-establish itself between each wake disturbance event. Axial chord flow frequency is defined as the axial velocity in the cascade divided by the axial chord length of the turbine blade.
Keywords/Search Tags:Turbine, Cascade, Flow, Blade, Axial chord, Reynolds number and freestream turbulence, Wake disturbance, Frequency
PDF Full Text Request
Related items