Font Size: a A A

A model for the release, dispersion and environmental impact of a postulated reactor accident from a submerged commercial nuclear power plant

Posted on:1999-10-13Degree:Ph.DType:Dissertation
University:University of Maryland College ParkCandidate:Bertch, Timothy CrestonFull Text:PDF
GTID:1462390014967898Subject:Engineering
Abstract/Summary:
Nuclear power plants are inherently suitable for submerged applications and could provide power to the shore power grid or support future underwater applications. The technology exists today and the construction of a submerged commercial nuclear power plant may become desirable. A submerged reactor is safer to humans because the infinite supply of water for heat removal, particulate retention in the water column, sedimentation to the ocean floor and inherent shielding of the aquatic environment would significantly mitigate the effects of a reactor accident. A better understanding of reactor operation in this new environment is required to quantify the radioecological impact and to determine the suitability of this concept.; The impact of release to the environment from a severe reactor accident is a new aspect of the field of marine radioecology. Current efforts have been centered on radioecological impacts of nuclear waste disposal, nuclear weapons testing fallout and shore nuclear plant discharges.; This dissertation examines the environmental impact of a severe reactor accident in a submerged commercial nuclear power plant, modeling a postulated site on the Atlantic continental shelf adjacent to the United States. This effort models the effects of geography, decay, particle transport/dispersion, bioaccumulation and elimination with associated dose commitment. The use of a source term equivalent to the release from Chernobyl allows comparison between the impacts of that accident and the postulated submerged commercial reactor plant accident. All input parameters are evaluated using sensitivity analysis. The effect of the release on marine biota is determined. Study of the pathways to humans from gaseous radionuclides, consumption of contaminated marine biota and direct exposure as contaminated water reaches the shoreline is conducted.; The model developed by this effort predicts a significant mitigation of the radioecological impact of the reactor accident release with a submerged commercial nuclear power plant. The two box models predict the most of the radio-ecological impact occurs during the first eight days after release. The most significant risk to humans is from consumption of biota. The reduction in impact to humans from a large radioactive release makes the concept worthy of further study.
Keywords/Search Tags:Nuclear power plant, Submerged commercial nuclear power, Impact, Release, Reactor accident, Environment, Postulated, Humans
Related items