Font Size: a A A

A multi-sensor study of the impact of ground-based glaciogenic seeding on orogrpahic clouds and precipitation

Posted on:2015-07-03Degree:Ph.DType:Dissertation
University:University of WyomingCandidate:Pokharel, BinodFull Text:PDF
GTID:1470390017499013Subject:Atmospheric Sciences
Abstract/Summary:
This dissertation examines reflectivity data from three different radar systems, as well as airborne and ground-based in situ particle imaging data, to study the impact of ground-based glaciogenic seeding on orographic clouds and precipitation formed over the mountains in southern Wyoming. The data for this study come from the AgI Seeding Cloud Impact Investigation (ASCII) field campaign conducted over the Sierra Madre mountains in 2012 (ASCII-12) and over the Medicine Bow mountains in 2013 (ASCII-13) in the context of the Wyoming Weather Modification Pilot Project (WWMPP). The campaigns were supported by a network of ground-based instruments, including a microwave radiometer, two profiling Ka-band Micro Rain Radars (MRRs), a Doppler on Wheels (DOW), rawinsondes, a Cloud Particle Imager, and a Parsivel disdrometer. The University of Wyoming King Air with profiling Wyoming Cloud Radar (WCR) conducted nine successful flights in ASCII-12, and eight flights in ASCII-13. WCR profiles from these flights are combined with those from seven other flights, which followed the same geographically-fixed pattern in 2008-09 (pre-ASCII) over the Medicine Bow range. All sampled storms were relatively shallow, with low-level air forced over the target mountain, and cold enough to support ice initiation by silver iodide (AgI) nuclei in cloud.;Three detailed case studies are conducted, each with different atmospheric conditions and different cloud and snow growth properties: one case (21 Feb 2012) is stratiform, with strong winds and cloud droplets too small to enable snow growth by accretion (riming). A second case (13 Feb 2012) contains shallow convective cells. Clouds in the third case study (22 Feb 2012) are stratiform but contain numerous large droplets (mode ~35 microm in diameter), large enough for ice particle growth by riming. These cases and all others, each with a treated period following an untreated period, show that a clear seeding signature is not immediately apparent in individual WCR reflectivity transects downwind of the silver iodide (AgI) generators, and that the natural trends in the precipitation over short timescales can easily overwhelm any seeding-induced change. Therefore the ASCII experimental design included a control region, upwind of the AgI generators.;The three case studies generally show an increase in surface snow particle concentration in the target region during the seeding period. Frequency-by-altitude displays of all WCR reflectivity data collected during the flights show slightly higher reflectivity values during seeding near the ground, at least when compared to the control region, in all three cases. This also applies to the two other radar systems (MRR and DOW), both with their own sampling strategy and target/control regions.;An examination of all ASCII cases combined (the "composite" analysis) also shows a positive trend in low-level reflectivity relative to the control region, both in convective and in stratiform cases. Also, convective cells sampled at flight level downwind of the AgI generators contain a higher concentration of small ice crystals during seeding.;A word of caution is warranted: both the magnitude and the sign of the change in the target region, compared to that in the control region, varies from case to case in the composite, and amongst the three radar systems (WCR, DOW and MRR). We speculate that this variation is only partly driven by different responses of orographic clouds to glaciogenic seeding, related to factors such as cloud base and cloud top temperature, cloud liquid water content, and snow growth mechanism. Instead, most of this variation probably relates to non-homogenous natural trends across the mountain range, and/or to sample unrepresentativeness, especially for the (relative small) control region, in other words to the sampling methods. The impact of natural variability and sampling aliasing can only be overcome by a storm sample size much larger than that collected in ASCII. As such, the ASCII sample size is not adequate either to quantify the magnitude of the seeding impact on snowfall, or to identify the conditions most suitable for ground-based seeding. This study is an exploration of cloud microphysical evidence linking AgI cloud seeding to snowfall. It is not a statistical study.;The preponderance of evidence from different radars and ground-based and airborne particle probes deployed in ASCII, in three case studies and in the composite analysis, points to the ability of ground-based glaciogenic seeding to increase the snowfall rate in orographic clouds..
Keywords/Search Tags:Ground-based, Seeding, Cloud, Impact, Radar systems, Agi, ASCII, Three
Related items