| The field of optomechanics studies tiny devices that can be pushed mechanically by light. It is an extremely promising avenue towards tests of quantum mechanics on a macroscopic scale, by transferring quantum states of light to nano- or micromechanical objects. This dissertation concerns a long term research program to create quantum superpositions of a macroscopic mirror in an optomechanical cavity.;This dissertation has two broad thrusts. The first focuses on microfabrication of a new type of device called optomechanical trampoline resonators, consisting of a small mirror on a cross-shaped tensed silicon nitride membrane. Devices have been fabricated with high mechanical and optical quality, including a 300 kHz device with quality factor 480,000, as well as a device of optical finesse 107,000. These devices are well into the sideband-resolved regime and suitable for optical cooling to the quantum ground state. One such device has been optically cooled to approximately 10 phonons.;The second major thrust is theoretical. Creating a macroscopic superposition is a challenging problem, requiring optical cooling to the ground state, strong coupling, extremely high optical finesse and extremely low frequency. A realistic assessment of achievable parameters indicates that it is possible to achieve ground state cooling or strong coupling, but not both. This dissertation proposes a new technique using postselection to achieve macroscopic superpositions with only weak coupling. This relaxes some of the required parameters by orders of magnitude. Prospects for observing hypothetical novel decoherence mechanisms are also discussed. |