Font Size: a A A

Electron Energy-Loss Spectroscopy Theory and Simulation Applied to Nanoparticle Plasmonics

Posted on:2015-11-01Degree:Ph.DType:Dissertation
University:University of WashingtonCandidate:Bigelow, Nicholas WalkerFull Text:PDF
GTID:1470390017995718Subject:Electromagnetics
Abstract/Summary:
In this dissertation, the capacity of electron energy-loss spectroscopy (EELS) to probe plasmons is examined in detail. EELS is shown to be able to detect both electric hot spots and Fano resonances in contrast to the prevailing knowledge prior to this work. The most detailed examination of magnetoplasmonic resonances in multi-ring structures to date and the utility of electron tomography to computational plasmonics is explored, and a new tomographic method for the reconstruction of a target is introduced.;Since the observation of single-molecule surface-enhanced Raman scattering (SMSERS) in 1997, questions regarding the nature of the electromagnetic hot spots responsible for such observations still persist. A computational analysis of the electron- and photon-driven surface-plasmon resonances of monomer and dimer metal nanorods is presented to elucidate the differences and similarities between the two excitation mechanisms in a system with well understood optical properties. By correlating the nanostructure's simulated electron energy loss spectrum and loss-probability maps with its induced polarization and scattered electric field we discern how certain plasmon modes are selectively excited and how they funnel energy from the excitation source into the near- and far-field. Using a fully retarded electron-scattering theory capable of describing arbitrary three-dimensional nanoparticle geometries, aggregation schemes, and material compositions, we find that electron energy-loss spectroscopy (EELS) is able to indirectly probe the same electromagnetic hot spots that are generated by an optical excitation source. EELS is then employed in a scanning transmission electron microscope (STEM) to obtain maps of the localized surface plasmon modes of SMSERS-active nanostructures, which are resolved in both space and energy. Single-molecule character is confirmed by the bianalyte approach using two isotopologues of Rhodamine 6G. The origins of this observation are explored using a fully three-dimensional electrodynamics simulation of both the electron energy loss probability and the near-electric field enhancements.;The optical-frequency magnetic and electric properties of cyclic aromatic plasmon-supporting metal nanoparticle oligomers are explored through a combination of STEM/EELS simulation and first-principles theory. A tight-binding type model is introduced to explore the rich hybridization physics in these plasmonic systems and tested with full-wave numerical electrodynamics simulations of the STEM electron probe. Building from a microscopic electric model, connection is made at the macroscopic level between the hybridization of localized magnetic moments into delocalized magnetic plasmons of controllable magnetic order and the mixing of atomic pz orbitals into delocalized pi molecular orbitals of varying nodal structure spanning the molecule. It is found that the STEM electrons are uniquely capable of exciting all of the different hybridized eigenmodes of the nanoparticle assembly---including multipolar closed-loop ferromagnetic and antiferromagnetic plasmons, giant electric dipole resonances, and radial breathing modes---by raster scanning the beam to the appropriate position. Comparison to plane wave light scattering and cathodoluminescence (CL) spectroscopy is made.;Through numerical simulation, we predict the existence of the Fano interference effect in the EELS and CL of symmetry-broken nanorod dimers that are heterogeneous in material composition and asymmetric in length. The differing selection rules of the electron probe in comparison to the photon of a plane wave allow for the simultaneous excitation of both optically bright and dark plasmons of each monomer unit, suggesting that Fano resonances will not arise in EELS and CL. Yet, interferences are manifested in the dimer's scattered near- and far-fields and are evident in EELS and CL due to the rapid pi-phase offset in the polarizations between super-radiant and sub-radiant hybridized plasmon modes of the dimer as a function of the energy loss suffered by the impinging electron. Depending upon the location of the electron beam, we demonstrate the conditions under which Fano interferences will be present in both optical and electron spectroscopies (EELS and CL) as well as a new class of Fano interferences that are uniquely electron-driven and are absent in the optical response. The Fano interference phenomenon between localized surface plasmon resonances (LSPRs) of individual silver nanocubes is then investigated experimentally using dark-field optical microscopy and electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM).;Finally, a group of five semi-collinear nanoparticles are modeled both by making a guess as to the third dimension from a single top-down electron micrograph and also through electron tomography. The degree of similarity between the computed properties of the target built through the two different methods is examined, as are the targets themselves. (Abstract shortened by UMI.).
Keywords/Search Tags:Electron, EELS, Plasmon, Simulation, Nanoparticle, Theory, STEM, Probe
Related items