Font Size: a A A

Friction on the bond and the vibrational relaxation in simple liquids

Posted on:1995-07-28Degree:Ph.DType:Dissertation
University:Columbia UniversityCandidate:Mishra, Bimalendu KumarFull Text:PDF
GTID:1471390014491202Subject:Physics
Abstract/Summary:PDF Full Text Request
In chapter 1, the energy relaxation of a stiff Morse oscillator dissolved in a simple LJ fluid is calculated using a reversible integrator (r-RESPA) in molecular dynamics generated from the Trotter factorization of the classical propagator. We compare the "real" relaxation from full MD simulations with that predicted by the Generalized Langevin Equation (GLE) with memory friction determined from the full Molecular Dynamics for a series of fluid densities. It is found that the GLE gives very good agreement with MD for the vibrational energy relaxation for this nonlinear oscillator far from equilibrium only for high density fluids, but reduced densities {dollar}rho < 0.5{dollar} the energy relaxation from the MD simulation becomes considered slower than that from the GLE. An analysis of the statistical properties of the random force shows that as the density is lowered the non-Gaussian behavior of the random force becomes more prominent. This behavior is consistent with a simple model in which the oscillator undergoes generalized Langevin dynamics between strong binary collisions with solvent atoms.; In chapter 2, molecular hydrodynamics is used to calculate the memory friction on the intramolecular vibrational coordinate of a homonuclear diatomic molecule dissolved in a simple liquid. The predicted memory friction is then compared to recent computer experiments. Agreement with the experimental memory functions is obtained when the linearized hydrodynamics is modified to include gaussian viscoelasticity and compressibility. The hydrodynamic friction on the bond appears to agree qualitatively very well, although quantitative agreement is not found at high frequencies. Various limits of the hydrodynamic friction are discussed.
Keywords/Search Tags:Friction, Relaxation, Simple, Vibrational
PDF Full Text Request
Related items