| A general theoretical and experimental treatment of transient grating diffraction is developed for interfacial holographic gratings in thin film structures. The gratings are assumed to have nonuniform spatial amplitude throughout the sample. Both reflection and transmission diffraction geometries are examined where the probe beam is incident on either side of the film-substrate interface with the grating wave-vector parallel to the interface. For samples in which the grating amplitude perpendicular to the sample interface varies slowly relative to the optical wavelength, the majority of the reflection geometry signal amplified is shown to arise from the surface or interfacial region. In contrast, the transmission geometry signal amplitude is dominated by contributions from the bulk of the sample. Three different material systems are examined. The first is a thin ({dollar}{dollar}1 GHz) acoustic Rayleigh waveguide modes are measured in the YBCO films from 17 to 300 K. |