Font Size: a A A

Bulk and Interface Thermodynamics of Calcia-, and Yttria-doped Zirconia Ceramics: Nanograined Phase Stability

Posted on:2016-06-14Degree:Ph.DType:Dissertation
University:University of California, DavisCandidate:Drazin, John WalterFull Text:PDF
GTID:1471390017481150Subject:Materials science
Abstract/Summary:
Calcia-, and yttria- doped zirconia powders and samples are essential systems in academia and industry due to their observed bulk polymorphism. Pure zirconia manifests as Baddeleyite, a monoclinic structured mineral with 7-fold coordination. This bulk form of zirconia has little application due to its asymmetry. Therefore dopants are added to the grain in-order to induce phase transitions to either a tetragonal or cubic polymorph with the incorporation of oxygen vacancies due to the dopant charge mis-match with the zirconia matrix. The cubic polymorph has cubic symmetry such that these samples see applications in solid oxide fuel cells (SOFCs) due to the high oxygen vacancy concentrations and high ionic mobility at elevated temperatures. The tetragonal polymorph has slight asymmetry in the c-axis compared to the a-axis such that the tetragonal samples have increased fracture toughness due to an impact induced phase transformation to a cubic structure.;These ceramic systems have been extensively studied in academia and used in various industries, but with the advent of nanotechnology one can wonder whether smaller grain samples will see improved characteristics similar to their bulk grain counterparts. However, there is a lack of data and knowledge of these systems in the nano grained region which provides us with an opportunity to advance the theory in these systems.;The polymorphism seen in the bulk grains samples is also seen in the nano-grained samples, but at slightly distinct dopant concentrations. The current theory hypothesizes that a surface excess, gamma (J/m 2), can be added to the Gibbs Free energy equation to account for the additional free energy of the nano-grain atoms. However, these surface energies have been difficult to measure and therefore thermodynamic data on these nano-grained samples have been sparse. Therefore, in this work, I will use a well established water adsorption microcalorimetry apparatus to measure the water coverage isotherms while simultaneously collecting the energetic contribution of the adsorbing water vapor. With this data and apparatus, I have derived a 2nd order differential equation that relates the surface energy to the measured quantities such that I collected surfaces energies for over 35 specimens in the calcia-zirconia and yttria-zirconia systems for the first time. From the results, it was found that the monoclinic polymorph had the largest surface energy in the range of 1.9 - 2.1 ( J/m2) while the tetragonal surface energies were roughly 1.4 - 1.6 (J/m2), the cubic surface energies were roughly 0.8 - 1.0 (J/m2), and the amorphous surface energies were the smallest at roughly 0.7 - 0.8 (J/m 2).;With the measured surface energy data, collected for the first time, we can create a nano-grain phase diagram similar to a bulk phase diagram that shows the stable polymorph as a function of dopant concentration and grain size using the bulk enthalpy data collected from high temperature oxide melt drop solution calorimetry. The phase diagrams show that pure zirconia will transform into tetragonal and cubic polymorphs from the monoclinic one at 7 and 5 nm respectively which confirms the experimental observations. The results are powerful predictive tools successfully applied in the nCZ and nYZ systems to a high degree of accuracy and adds a new development to conventional bulk phase diagrams. These diagrams should be the basis for nanotechnological efforts in nCZ and nYZ based systems, and suggest similar efforts are needed in other nano systems to pursue an in depth understanding and optimization of nanomaterials.;After working on the theoretical aspects of phase stability, the focus of the research will shift to producing dense samples to measure observable quantities such as oxygen conduction and mechanical hardness. However, producing said samples with the nanocrystalline grain sizes has also been challenging as conventional sintering requires high temperatures which, as a consequence, induces grain growth of the samples limiting the minimum grain size of the samples. Therefore, in this work, we have developed a Pressure Assisted Rapid Sintering Technique (PARS) that uses high currents to Joule heat the samples to moderate temperatures (650-900 °C) for short durations (5-10 min) under large compressive pressures (600-2200 MPa). With this new technique, atomic level grain sizes (sub-10nm) can be easily achieved at high relative densities (>98 %).;Using the PARS setup, multiple 3nYZ samples were produced with varied grain sizes down to 9 nm and as large as 5mum. The mechanical hardness of these samples were tested using a Vicker's microhardness indentation apparatus. The hardness of the "bulk" grains was roughly 12.9 GPa while the smallest grain size pellet had a hardness approaching 15 GPa. All of the 3nYZ pellets had a higher hardness with diminishing grain size, thereby extending the Hall-Petch relationship to 9 nm in the 3YZ system. This is an amazing and unprecedented result to date.;After producing the extreme nano-grained samples (15nCZ and 17.5nYSZ), they were tested for inter- and intragranular oxygen ion conduction as well. The results showed that the smaller grained samples have increased levels of oxygen ion conduction from both inter- and intragranular diffusion regardless of the operating temperatures. In addition, it was seen that the activation energies for both modes of oxygen ion diffusion were lowered for the nCZ system while a plateaued effect was seen in the nYZ system. A new theoretical formulation was proposed to explain the trends such that there are two modifiable parameters to exploit; activation energy and grain size. With the lowering of the grain size, the number of interconnected grain boundaries would increase dramatically allowing for more efficient travel around and through the grains. The activation energy can be lowered by modifying the chemistry of the grain boundary by specifically choosing larger dopants with a positive enthalpy of segregation such the concentration of the dopants on the grain boundary would increase, spacing the unattached bonds further apart and reducing their number. Therefore, one can use an engineered nanograined SOFC to decrease the operating temperature of the device without altering the output power density; significantly improving safety and economics.
Keywords/Search Tags:Bulk, Grain, Zirconia, Samples, Phase, Systems, Due, Surface energies
Related items