Font Size: a A A

Mechanical behavior of ultra-fine grained and nanocrystalline metals and single crystals: Experiments, modeling and simulations

Posted on:2016-02-05Degree:Ph.DType:Dissertation
University:University of Maryland, Baltimore CountyCandidate:Liu, JianFull Text:PDF
GTID:1471390017483590Subject:Materials science
Abstract/Summary:
Ultra-fine grained (ufg, 100 nm < grain size < 1microm) and nanocrystalline materials (nc, grain size < 100 nm) have been the subject of widespread research over the past couple of decades. In this study, the mechanical behavior of ultra-fine grained and nanocrystalline metals were studied both experimentally and numerically. High quality bulk ultrafine-grained/nanocrystalline (ufg/nc) titanium samples were prepared through room temperature mechanical milling and conventional consolidation processes. The prepared bulk samples show high purity, very low porosity and high ductility under compression. The dependency of yield stress and post-yielding behavior on grain size, strain rate and temperature are comprehensively studied. The texture evolution of the ufg/nc samples under compression is measured by synchrotron X-Ray Diffraction (XRD). On the macroscopic scale, the viscoplastic phenomenological Khan--Liang--Farrokh (KLF) model is used to correlate the experimental results of the ufg/nc Ti.;Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used for the purpose of incorporating strain rate and temperature effects into CPFEM. The classical and two newly developed single crystal plasticity models are used to simulate the deformation responses of single crystal aluminum. A constitutive model based on intragranular dislocation slip is shown to correlate closely to the stain rate effect and latent hardening behavior of single crystal Al.;For ufg/nc face-centered cubic (FCC) material, we assume that dislocation slip is still the most important deformation mechanism while there is no interaction between dislocations within grains. We develop a constitutive model based on dislocation glide within ufg/nc grains and include all stages of dislocation activities especially their interactions with GB. An Arrhenius type rate is established based on the thermal activated depinning of dislocations from GB obstacles. The thermal strength is obtained as a function of the activation energy of the GB obstacles and the activation length. The athermal part includes the strength due to the grain size dependence and the strength due to the dislocation density. The model parameters for two ufg/nc materials are determined by comparing experimental results to the one dimensional (1D) flow stress model using a Taylor's factor.;The new constitutive model is incorporated into three dimensional crystal plasticity and the crystal plasticity model is implemented into a UMAT subroutine of ABAQUS finite element program. The uniaxial deformation responses of two ufg/nc materials are simulated using the previously determined model parameters. CPFEM simulations give flow stress predictions that are very close to 1D model correlations/predictions. It is a clear verification of a correct implementation of the new constitutive models into crystal plasticity modeling. With such a verification, the dislocation mechanism-based crystal plasticity UMAT is ready for more advanced simulation studies.
Keywords/Search Tags:Crystal, Model, Grain, Behavior, Dislocation, Mechanical
Related items