Font Size: a A A

Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

Posted on:2016-08-07Degree:Ph.DType:Dissertation
University:The Catholic University of AmericaCandidate:Henderson, MarkFull Text:PDF
GTID:1471390017486768Subject:Condensed matter physics
Abstract/Summary:
The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation.;The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity.;Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of such glasses because the two network formers will tend to separate into different phases, making it difficult to obtain homogenous samples. The PSF system proved easier to study than other systems. The hopping in this system seems to be dominated by the Greaves mid-range mechanism. In addition, in samples containing the same proportion of iron, conductivities were found to not depend noticeably on composition, supporting the use of models focusing on the transition metal ions in calculating conductivity. Despite ostensibly changing the structural and metrical properties of the network, the ratio of the concentration of the network formers only appears to have an effect on the conductivity through changing the inter-atomic distance of iron.;The numerical model adds to the evidence for the dominating contribution on the nearest-neighbor ordering of TI ions on the electrical properties of a glass; especially interesting is the reproducibility of the mixed-transition ion effect (MTE) in a numerical model where ensemble averages are taken over possible arrangements. It was also determined that the disorder arising from the spread between two types of traps can lead to a MIT as function of population. Finally, an outline of the notion of invariance in TI glasses is extended from work done by other authors, creating an opportunity for further research.
Keywords/Search Tags:Glasses, Transition, Transport, Phosphate, Ions, Network formers
Related items